54
Views
70
CrossRef citations to date
0
Altmetric
Gene Expression

U17/snR30 Is a Ubiquitous snoRNA with Two Conserved Sequence Motifs Essential for 18S rRNA Production

, &
Pages 1769-1778 | Received 11 Sep 2003, Accepted 07 Nov 2003, Published online: 27 Mar 2023

REFERENCES

  • Balakin, A. G., Smith L., and Fournier M. J.. 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86:823–834.
  • Bally, M., Hughes J., and Cesareni G.. 1988. SnR30: a new, essential small nuclear RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 16:5291–5303.
  • Beltrame, M., and Tollervey D.. 1995. Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis. EMBO J. 14:4350–4356.
  • Borovjagin, A. V., and Gerbi S. A.. 2000. The spacing between functional cis-elements of U3 snoRNA is critical for rRNA processing. J. Mol. Biol. 300:57–74.
  • Bortolin, M. L., Ganot P., and Kiss T.. 1999. Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J. 18:457–469.
  • Bortolin, M. L., and Kiss T.. 1998. Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA 4:445–454.
  • Cecconi, F., Crosio C., Mariottini P., Cesareni G., Giorgi M., Brenner S., and Amaldi F.. 1996. A functional role for some Fugu introns larger than the typical short ones: the example of the gene coding for ribosomal protein S7 and snoRNA U17. Nucleic Acids Res. 24:3167–3172.
  • Cecconi, F., Mariottini P., Loreni F., Pierandrei-Amaldi P., Campioni N., and Amaldi F.. 1994. U17XS8, a small nucleolar RNA with a 12 nt complementarity to 18S rRNA and coded by a sequence repeated in the six introns of Xenopus laevis ribosomal protein S8 gene. Nucleic Acids Res. 22:732–741.
  • Cervelli, M., Cecconi F., Giorgi M., Annesi F., Oliverio M., and Mariottini P.. 2002. Comparative structure analysis of vertebrate U17 small nucleolar RNA (snoRNA). J. Mol. Evol. 54:166–179.
  • Dragon, F., Pogacic V., and Filipowicz W.. 2000. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol. Cell. Biol. 20:3037–3048.
  • Enright, C. A., Maxwell E. S., Eliceiri G. L., and Sollner-Webb B.. 1996. 5′ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA 2:1094–1099.
  • Fatica, A., and Tollervey D.. 2002. Making ribosomes. Curr. Opin. Cell Biol. 14:313–318.
  • Filipowicz, W., and Pogacic V.. 2002. Biogenesis of small nucleolar ribonucleoproteins. Curr. Opin. Cell Biol. 14:319–327.
  • Ganot, P., Bortolin M. L., and Kiss T.. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809.
  • Ganot, P., Caizergues-Ferrer M., and Kiss T.. 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11:941–956.
  • Girard, J. P., Lehtonen H., Caizergues-Ferrer M., Amalric F., Tollervey D., and Lapeyre B.. 1992. GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J. 11:673–682.
  • Goodall, G. J., Wiebauer K., and Filipowicz W.. 1990. Analysis of pre-mRNA processing in transfected plant protoplasts. Methods Enzymol. 181:148–161.
  • Guthrie, C., and Patterson B.. 1988. Spliceosomal snRNAs. Annu. Rev. Genet. 22:387–419.
  • Henras, A., Henry Y., Bousquet-Antonelli C., Noaillac-Depeyre J., Gelugne J. P., and Caizergues-Ferrer M.. 1998. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17:7078–7090.
  • Hughes, J. M. 1996. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J. Mol. Biol. 259:645–654.
  • Hughes, J. M., and Ares M., Jr. 1991. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J. 10:4231–4239.
  • Ito, H., Fukuda Y., Murata K., and Kimura A.. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kass, S., Tyc K., Steitz J. A., and Sollner-Webb B.. 1990. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60:897–908.
  • Kiss, T. 2001. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 20:3617–3622.
  • Kiss, T. 2002. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145–148.
  • Kiss, T., and Filipowicz W.. 1993. Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene RCC1. EMBO J. 12:2913–2920.
  • Kressler, D., Linder P., and de La Cruz J.. 1999. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:7897–7912.
  • Lafontaine, D. L., Bousquet-Antonelli C., Henry Y., Caizergues-Ferrer M., and Tollervey D.. 1998. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12:527–537.
  • Lange, T. S., Borovjagin A., Maxwell E. S., and Gerbi S. A.. 1998. Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J. 17:3176–3187.
  • Li, H. D., Zagorski J., and Fournier M. J.. 1990. Depletion of U14 small nuclear RNA (snR128) disrupts production of 18S rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1145–1152.
  • Liang, W. Q., and Fournier M. J.. 1995. U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes Dev. 9:2433–2443.
  • Lubben, B., Fabrizio P., Kastner B., and Luhrmann R.. 1995. Isolation and characterization of the small nucleolar ribonucleoprotein particle snR30 from Saccharomyces cerevisiae. J. Biol. Chem. 270:11549–11554.
  • Lygerou, Z., Allmang C., Tollervey D., and Seraphin B.. 1996. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272:268–270.
  • Maxwell, E. S., and Fournier M. J.. 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 64:897–934.
  • Mishra, R. K., and Eliceiri G. L.. 1997. Three small nucleolar RNAs that are involved in ribosomal RNA precursor processing. Proc. Natl. Acad. Sci. USA 94:4972–4977.
  • Morrissey, J. P., and Tollervey D.. 1993. Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol. Cell. Biol. 13:2469–2477.
  • Mougey, E. B., Pape L. K., and Sollner-Webb B.. 1993. A U3 small nuclear ribonucleoprotein-requiring processing event in the 5′ external transcribed spacer of Xenopus precursor rRNA. Mol. Cell. Biol. 13:5990–5998.
  • Peculis, B. A. 1997. The sequence of the 5′ end of the U8 small nucleolar RNA is critical for 5.8S and 28S rRNA maturation. Mol. Cell. Biol. 17:3702–3713.
  • Peculis, B. A., and Steitz J. A.. 1993. Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73:1233–1245.
  • Rimoldi, O. J., Raghu B., Nag M. K., and Eliceiri G. L.. 1993. Three new small nucleolar RNAs that are psoralen cross-linked in vivo to unique regions of pre-rRNA. Mol. Cell. Biol. 13:4382–4390.
  • Ruff, E. A., Rimoldi O. J., Raghu B., and Eliceiri G. L.. 1993. Three small nucleolar RNAs of unique nucleotide sequences. Proc. Natl. Acad. Sci. USA 90:635–638.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Savino, R., and Gerbi S. A.. 1990. In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing. EMBO J. 9:2299–2308.
  • Selvamurugan, N., Joost O. H., Haas E. S., Brown J. W., Galvin N. J., and Eliceiri G. L.. 1997. Intracellular localization and unique conserved sequences of three small nucleolar RNAs. Nucleic Acids Res. 25:1591–1596.
  • Sharma, K., and Tollervey D.. 1999. Base pairing between U3 small nucleolar RNA and the 5′ end of 18S rRNA is required for pre-rRNA processing. Mol. Cell. Biol. 19:6012–6019.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–23.
  • Terns, M. P., and Terns R. M.. 2002. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr. 10:17–39.
  • Tollervey, D. 1987. A yeast small nuclear RNA is required for normal processing of pre-ribosomal RNA. EMBO J. 6:4169–4175.
  • Tollervey, D., and Kiss T.. 1997. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9:337–342.
  • Tollervey, D., and Mattaj I. W.. 1987. Fungal small nuclear ribonucleoproteins share properties with plant and vertebrate U-snRNPs. EMBO J. 6:469–476.
  • Tycowski, K. T., Shu M. D., and Steitz J. A.. 1994. Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 266:1558–1561.
  • Venema, J., and Tollervey D.. 1999. Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33:261–311.
  • Watkins, N. J., Gottschalk A., Neubauer G., Kastner B., Fabrizio P., Mann M., and Luhrmann R.. 1998. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549–1568.
  • Yu, Y. T., Scharl E. C., M. S. C., and Steitz J. A.. 1999. The growing world of small nuclear ribonucleoproteins, p. 487–524. In Gesteland R. F., Cech T. R., and Atkins J. F. (ed.), The RNA world. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Zuker, M., Mathews D. H., and Turner D. H.. 1999. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide, p. 11–43. In Barciszewski J. and Clark B. F. C. (ed.), RNA biochemistry and bio/technology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.