8
Views
94
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Jab1/CSN5, a Component of the COP9 Signalosome, Regulates Transforming Growth Factor β Signaling by Binding to Smad7 and Promoting Its Degradation

, , , , , , , & show all
Pages 2251-2262 | Received 25 Sep 2003, Accepted 16 Dec 2003, Published online: 27 Mar 2023

REFERENCE

  • Afrakhte, M., Moren A., Jossan S., Itoh S., Sampath K., Westermark B., Heldin C.-H., Heldin N. E., and ten Dijke P.. 1998. Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem. Biophys. Res. Commun. 249:505–511.
  • Attisano, L., and Wrana J. L.. 2000. Smads as transcriptional co-modulators. Curr. Opin. Cell Biol. 12:235–243.
  • Bae, M. K., Ahn M. Y., Jeong J. W., Bae M. H., Lee Y. M., Bae S. K., Park J. W., Kim K. R., and Kim K. W.. 2002. Jab1 interacts directly with HIF-1α and regulates its stability. J. Biol. Chem. 277:9–12.
  • Bech-Otschir, D., Seeger M., and Dubiel W.. 2002. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J. Cell Sci. 115:467–473.
  • Bianchi, E., Denti S., Granata A., Bossi G., Geginat J., Villa A., Rogge L., and Pardi R.. 2000. Integrin LFA-1 interacts with the transcriptional co-activator JAB1 to modulate AP-1 activity. Nature 404:617–621.
  • Bitzer, M., von Gersdorff G., Liang D., Dominguez-Rosales A., Beg A. A., Rojkind M., and Böttinger E. P.. 2000. A mechanism of suppression of TGF-β/SMAD signaling by NFκB/RelA. Genes Dev. 14:187–197.
  • Bonifacino, J. S., and Weissman A. M.. 1998. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Biol. 14:19–57.
  • Casellas, R., and Brivanlou A. H.. 1998. Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. Dev. Biol. 198:1–12.
  • Chauchereau, A., Georgiakaki M., Perrin-Wolff M., Milgrom E., and Loosfelt H.. 2000. JAB1 interacts with both the progesterone receptor and SRC-1. J. Biol. Chem. 275:8540–8548.
  • Chen, H. I., and Sudol M.. 1995. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. USA 9 2:7819–7823.
  • Claret, F. X., Hibi M., Dhut S., Toda T., and Karin M.. 1996. A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383:453–457.
  • Dechend, R., Hirano F., Lehman K., Heissmeyer V., Ansieau S., Wulczyn F. G., Scheidereit C., and Leutz A.. 1999. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene 18:3316–3323.
  • Deng, X. W., Dubiel W., Wei N., Hofmann K., and Mundt K.. 2000. Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development. Trends Genet. 16:202–203.
  • Derynck, R., Zhang Y., and Feng X.-H.. 1998. Smads: transcriptional activators of TGF-β responses. Cell 95:737–740.
  • Deshaies, R. J. 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15:435–467.
  • Ebisawa, T., Fukuchi M., Murakami G., Chiba T., Tanaka K., Imamura T., and Miyazono K.. 2001. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276:12477–12480.
  • Eppert, K., Scherer S. W., Ozcelik H., Pirone R., Hoodless P., Kim H., Tsui L. C., Bapat B., Gallinger S., Andrulis I. L., Thomsen G. H., Wrana J. L., and Attisano L.. 1996. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552.
  • Fujii, M., Takeda K. T., Imamura H., Aoki T. K., Sampath S., Enomoto M., Kawabata M., Kato H., Ichijo H., and Miyazono K.. 1999. Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol. Biol. Cell 10:3801–3813.
  • Glickman, M. H., Rubin D. M., Coux O., Wefes I., Pfeifer G., Cjeka Z., Baumeister W., Fried V. A., and Finley D.. 1998. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623.
  • Hahn, S. A., Schutte M., Hoque A. T., Moskaluk C. A., da Costa L. T., Rozenblum E., Weinstein C. L., Fischer A., Yeo C. J., Hruban R. H., and Kern S. E.. 1996. DPC4, a candidate tumor suppressor gene at human chromosome 18q21. 1. Science 271:350–353.
  • Hayashi, H., Abdollah S., Qiu Y., Cai J., Xu Y.-Y., Grinnell B. W., Richardson M. A., Topper J. N., Gimbrone M. A., Jr., Wrana J. L., and Falb D.. 1997. The MAD-related protein Smad7 associates with the TGF-β receptor and functions as an antagonist of TGF-β signaling. Cell 89:1165–1173.
  • Heldin, C.-H., Miyazono K., and ten Dijke P.. 1997. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471.
  • Hershko, A., and Ciechanover A.. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–479.
  • Imamura, T., Takase M., Nishihara A., Oeda E., Hanai J.-I., Kawabata M., and Miyazono K.. 1997. Smad6 inhibits signaling by the TGF-β superfamily. Nature 389:622–626.
  • Itoh, S., Landstrom M., Hermansson A., Itoh F., Heldin C.-H., Heldin N.-E., and ten Dijke P.. 1998. Transforming growth factor β1 induces nuclear export of inhibitory Smad7. J. Biol. Chem. 273:29195–29201.
  • Kavsak, P., Rasmussen R. K., Caysing C. G., Bonni S., Zhu H., Thomsen G. H., and Wrana J. L.. 2000. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation. Mol. Cell 6:1365–1375.
  • Kim, S.-J., Im Y.-H., Markowitz S. D., and Bang Y.-J.. 2000. Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev. 11:159–168.
  • Kleeff, J., Ishiwata T., Maruyama H., Friess H., Truong P., Buchler M. W., Falb D., and Korc M.. 1999. The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18:5363–5372.
  • Kleemann, R., Hausser A., Geiger G., Mischke R., Burger-Kentischer A., Flieger O., Johannes F. J., Roger T., Calandra T., Kapurniotu A., Grell M., Finkelmeier D., Brunner H., and Bernhagen J.. 2000. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 408:211–216.
  • Kwok, S. F., Solano R., Tsuge T., Chamovitz D. A., Ecker J. R., Matsui M., and Deng X. W.. 1998. Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 10:1779–1790.
  • Lallemand, F., Mazars A., Prunier C., Bertrand F., Kornprost M., Gallea S., Roman-Roman S., Cherqui G., and Atfi A.. 2001. Smad7 inhibits the survival nuclear factor κB and potentiates apoptosis in epithelial cells. Oncogene 20:879–884.
  • Landstrom, M., Heldin N. E., Bu S., Hermansson A., Itoh S., ten Dijke P., and Heldin C. H.. 2000. Smad7 mediates apoptosis induced by transforming growth factor β in prostatic carcinoma cells. Curr. Biol. 10:535–538.
  • Lin, X., Liang M., and Feng X.-H.. 2000. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-β signaling. J. Biol. Chem. 275:36818–36822.
  • Markowitz, S. D., and Roberts A. B.. 1996. Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine Growth Factor Rev. 7:93–102.
  • Massagué, J., and Chen Y. G.. 2000. Controlling TGF-β signaling. Genes Dev. 14:627–644.
  • Massagué, J., and Wotton D.. 2000. Transcriptional control by the TGF-β/Smad signaling system. EMBO J. 19:1745–1754.
  • McManus, M. T., and Sharp P. A.. 2002. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3:737–747.
  • Miyazono, K. 2000. Positive and negative regulation of TGF-β signaling. J. Cell Sci. 113:1101–1109.
  • Mizushima, S., and Nagata S.. 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18:5322.
  • Nakao, A., Afrakhte M., Moren A., Nakayama T., Christian J. L., Heuchel R., Itoh S., Kawabata M., Heldin N.-E., Heldin C.-H., and ten Dijke P.. 1997. Identification of Smad7, a TGF-β-inducible antagonist of TGF-β signalling. Nature 389:631–635.
  • Okado, T., Terada Y., Tanaka H., Inoshita S., Nakao A., and Sasaki S.. 2002. Smad7 mediates transforming growth factor-β-induced apoptosis in mesangial cells. Kidney Int. 62:1178–1186.
  • Osterlund, M. T., Hardtke C. S., Wei N., and Deng X. W.. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466.
  • Pulaski, L., Landstrom M., Heldin C. H., and Souchelnytskyi S.. 2001. Phosphorylation of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-β-dependent signaling but affects Smad7-dependent transcriptional activation. J. Biol. Chem. 276:14344–14349.
  • Roberts, A. B., and Sporn M. B.. 1990. The transforming growth factor-βs, 419–472. In Sporn M. B. and Roberts A. B. (ed.), Peptide growth factors and their receptors, part I. Springer-Verlag, Heidelberg, Germany.
  • Schwechheimer, C., and Deng X. W.. 2000. The COP/DET/FUS proteins—regulators of eukaryotic growth and development. Semin. Cell Dev. Biol. 11:495–503.
  • Souchelnytskyi, S., Nakayama T., Nakao A., Morén A., Heldin C.-H., Christian J. L., and ten Dijke P.. 1998. Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-β receptors. J. Biol. Chem. 273:25364–25370.
  • Suzuki, C., Murakami G., Fukuchi M., Shimanuki T., Shikauchi Y., Imamura T., and Miyazono K.. 2002. Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane. J. Biol. Chem. 277:39919–39925.
  • Tajima, Y., Goto K., Yoshida M., Shinomiya K., Sekimoto T., Yoneda Y., and Miyazono K.. 2003. Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-β signaling by Smad7. J. Biol. Chem. 278:10716–10721.
  • Tomoda, K., Kubota Y., and Kato J.-J.. 1999. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398:160–165.
  • Tomoda, K., Kubota Y., Arata Y., Mori S., Maeda M., Tanaka T., Yoshida M., Yoneda-Kato N., and Kato J.-J.. 2002. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J. Biol. Chem. 277:2302–2310.
  • Ulloa, L., Doody J., and Massagué J.. 1999. Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature 397:710–713.
  • Wan, M., Cao X., Bai S., Wu L., Shi X., Wang N., and Cao X.. 2002. Jab1 antagonizes TGF-β signaling by inducing Smad4 degradation. EMBO Rep. 3:171–176.
  • Wei, N., and Deng X. W.. 1999. Making sense of the COP9 signalosome. A regulatory protein complex conserved from Arabidopsis to human. Trends Genet. 15:98–103.
  • Wrana, J. L., Attisano L., Carcamo J., Zentella A., Doody J., Laiho M., Wang X.-F., and Massagué J.. 1992. TGF-β signals through a heteromeric protein kinase receptor complex. Cell 71:1003–1014.
  • Yamamura, Y., Hua X., Bergelson S., and Lodish H. F.. 2000. Critical role of Smads and AP-1 complex in transforming growth factor-β-dependent apoptosis. J. Biol. Chem. 275:36295–36302.
  • Yang, H.-Y., Zhou B. P., Hung M.-C., and Lee M.-H.. 2000. Oncogenic signals of HER-2/neu in regulating the stability of the cyclin-dependent kinase inhibitor p27. J. Biol. Chem. 275:24735–24739.
  • Zawel, L., Dai J. L., Buckhaults P., Zhou S., Kinzler K. W., Vogelstein B., and Kern S. E.. 1998. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1:611–617.
  • Zhu, H., Kavsak P., Abdollah S., Wrana J. L., and Thomsen G. H.. 1999. ASMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400:687–693.
  • Zhu, H.-J., Iaria J., and Sizeland A. M.. 1999. Smad7 differentially regulates transforming growth factor β-signaling pathways. J. Biol. Chem. 274:32258–32264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.