67
Views
138
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

RAD51-Dependent Break-Induced Replication in Yeast

&
Pages 2344-2351 | Received 11 Dec 2003, Accepted 30 Dec 2003, Published online: 27 Mar 2023

REFERENCE

  • Adams, A., Gottschling D. E., Kaiser C. A., and Stearns T.. 1998. Methods in yeast genetics, a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Aguilera, A. 2001. Double-strand break repair: are Rad51/RecA-DNA joints barriers to DNA replication? Trends Genet. 17:318–321.
  • Alani, E., Padmore R., and Kleckner N.. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436.
  • Bai, Y., Davis A. P., and Symington L. S.. 1999. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 153:1117–1130.
  • Bai, Y., and Symington L. S.. 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10:2025–2037.
  • Bartsch, S., Kang L. E., and Symington L. S.. 2000. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol. Cell. Biol. 20:1194–1205.
  • Bressan, D. A., Baxter B. K., and Petrini J. H.. 1999. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:7681–7687.
  • Cao, L., Alani E., and Kleckner N.. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101.
  • Carney, J. P., Maser R. S., Olivares H., Davis E. M., Le Beau M., Yates III J. R., Hays L., Morgan W. F., and Petrini J. H.. 1998. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486.
  • Chen, Q., Ijpma A., and Greider C. W.. 2001. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol. 21:1819–1827.
  • Costanzo, V., Robertson K., Bibikova M., Kim E., Grieco D., Gottesman M., Carroll D., and Gautier J.. 2001. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell. 8:137–147.
  • Dani, G. M., and Zakian V. A.. 1983. Mitotic and meiotic stability of linear plasmids in yeast. Proc. Natl. Acad. Sci. USA 80:3406–3410.
  • Dunn, B., Szauter P., Pardue M. L., and Szostak J. W.. 1984. Transfer of yeast telomeres to linear plasmids by recombination. Cell 39:191–201.
  • Freedman, J. A., and Jinks-Robertson S.. 2002. Genetic requirements for spontaneous and transcription-stimulated mitotic recombination in Saccharomyces cerevisiae. Genetics 162:15–27.
  • Galgoczy, D. J., and Toczyski D. P.. 2001. Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol. Cell. Biol. 21:1710–1718.
  • Gonzalez-Barrera, S., Cortes-Ledesma F., Wellinger R. E., and Aguilera A.. 2003. Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol. Cell. 11:1661–1671.
  • Hieter, P., Mann C., Snyder M., and Davis R. W.. 1985. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40:381–392.
  • Ira, G., and Haber J. E.. 2002. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22:6384–6392.
  • Ito, H., Fukuda Y., Murata K., and Kimura A.. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Ivanov, E. L., Korolev V. G., and Fabre F.. 1992. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132:651–664.
  • Ivanov, E. L., Sugawara N., Fishman-Lobell J., and Haber J. E.. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142:693–704.
  • Ivanov, E. L., Sugawara N., White C. I., Fabre F., and Haber J. E.. 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3414–3425.
  • Kironmai, K. M., and Muniyappa K.. 1997. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2:443–455.
  • Kowalczykowski, S. C. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25:156–165.
  • Kraus, E., Leung W. Y., and Haber J. E.. 2001. Break-induced replication: a review and an example in budding yeast. Proc. Natl. Acad. Sci. USA 98:8255–8262.
  • Kreuzer, K. N. 2000. Recombination-dependent DNA replication in phage T4. Trends Biochem. Sci. 25:165–173.
  • Le, S., Moore J. K., Haber J. E., and Greider C. W.. 1999. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152:143–152.
  • Lim, D. S., and Hasty P.. 1996. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16:7133–7143.
  • Lundblad, V., and Blackburn E. H.. 1993. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73:347–360.
  • Luo, G., Yao M. S., Bender C. F., Mills M., Bladl A. R., Bradley A., and Petrini J. H.. 1999. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl. Acad. Sci. USA 96:7376–7381.
  • Lustig, A. J. 1992. Hoogsteen G-G base pairing is dispensable for telomere healing in yeast. Nucleic Acids Res. 20:3021–3028.
  • Lustig, A. J., Kurtz S., and Shore D.. 1990. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250:549–553.
  • Malkova, A., Ivanov E. L., and Haber J. E.. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl. Acad. Sci. USA 93:7131–7136.
  • Malkova, A., Signon L., Schaefer C. B., Naylor M. L., Theis J. F., Newlon C. S., and Haber J. E.. 2001. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev. 15:1055–1060.
  • Mangahas, J. L., Alexander M. K., Sandell L. L., and Zakian V. A.. 2001. Repair of chromosome ends after telomere loss in Saccharomyces. Mol. Biol. Cell. 12:4078–4089.
  • Maser, R. S., Mirzoeva O. K., Wells J., Olivares H., Williams B. R., Zinkel R. A., Farnham P. J., and Petrini J. H.. 2001. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell. Biol. 21:6006–6016.
  • Michel, B. 2000. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25:173–178.
  • Michel, B., Ehrlich S. D., and Uzest M.. 1997. DNA double-strand breaks caused by replication arrest. EMBO J. 16:430–438.
  • Morgan, E. A., Shah N., and Symington L. S.. 2002. The requirement for ATP hydrolysis by Saccharomyces cerevisiae Rad51 is bypassed by mating-type heterozygosity or RAD54 in high copy numbers. Mol. Cell. Biol. 22:6336–6343.
  • Morrow, D. M., Connelly C., and Hieter P.. 1997. “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–382.
  • Mortensen, U. H., Bendixen C., Sunjevaric I., and Rothstein R.. 1996. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl. Acad. Sci. USA 93:10729–10734.
  • Murray, A. W., and Szostak J. W.. 1983. Construction of artificial chromosomes in yeast. Nature 305:189–193.
  • Roth, D. B., Nakajima P. B., Menetski J. P., Bosma M. J., and Gellert M.. 1992. V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor delta rearrangement signals. Cell 69:41–53.
  • Schiestl, R. H., Zhu J., and Petes T. D.. 1994. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:4493–4500.
  • Schwartz, D. C., and Cantor C. R.. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75.
  • Seigneur, M., Bidnenko V., Ehrlich S. D., and Michel B.. 1998. RuvAB acts at arrested replication forks. Cell 95:419–430.
  • Signon, L., Malkova A., Naylor M. L., Klein H., and Haber J. E.. 2001. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell. Biol. 21:2048–2056.
  • Sonoda, E., Sasaki M. S., Buerstedde J. M., Bezzubova O., Shinohara A., Ogawa H., Takata M., Yamaguchi-Iwai Y., and Takeda S.. 1998. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17:598–608.
  • Strathern, J. N., Klar A. J., Hicks J. B., Abraham J. A., Ivy J. M., Nasmyth K. A., and McGill C.. 1982. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31:183–192.
  • Sugawara, N., Ira G., and Haber J. E.. 2000. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20:5300–5309.
  • Sugiyama, T., and Kowalczykowski S. C.. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J. Biol. Chem. 277:31663–31672.
  • Sun, H., Treco D., Schultes N. P., and Szostak J. W.. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90.
  • Sung, P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272:28194–28197.
  • Symington, L. S. 1998. Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res. 26:5589–5595.
  • Symington, L. S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66:630–670.
  • Symington, L. S., Kang L. E., and Moreau S.. 2000. Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae. Nucleic Acids Res. 28:4649–4656.
  • Teng, S. C., Chang J., McCowan B., and Zakian V. A.. 2000. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell. 6:947–952.
  • Thomas, B. J., and Rothstein R.. 1989. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123:725–738.
  • Tishkoff, D. X., Filosi N., Gaida G. M., and Kolodner R. D.. 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88:253–263.
  • Tsuzuki, T., Fujii Y., Sakumi K., Tominaga Y., Nakao K., Sekiguchi M., Matsushiro A., Yoshimura Y., and Morita T.. 1996. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93:6236–6240.
  • Usui, T., Ohta T., Oshiumi H., Tomizawa J., Ogawa H., and Ogawa T.. 1998. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95:705–716.
  • Vollrath, D., Davis R. W., Connelly C., and Hieter P.. 1988. Physical mapping of large DNA by chromosome fragmentation. Proc. Natl. Acad. Sci. USA 85:6027–6031.
  • Xiao, Y., and Weaver D. T.. 1997. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25:2985–2991.
  • Xu, L., and Marians K. J.. 2003. PriA mediates DNA replication pathway choice at recombination intermediates. Mol. Cell. 11:817–826.
  • Yamaguchi-Iwai, Y., Sonoda E., Sasaki M. S., Morrison C., Haraguchi T., Hiraoka Y., Yamashita Y. M., Yagi T., Takata M., Price C., Kakazu N., and Takeda S.. 1999. Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J. 18:6619–6629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.