43
Views
128
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Nup358/RanBP2 Attaches to the Nuclear Pore Complex via Association with Nup88 and Nup214/CAN and Plays a Supporting Role in CRM1-Mediated Nuclear Protein Export

, , &
Pages 2373-2384 | Received 15 Sep 2003, Accepted 16 Dec 2003, Published online: 27 Mar 2023

REFERENCE

  • Adachi, Y., and Yanagida M.. 1989. Higher order chromosome structure is affected by cold-sensitive mutations in a Schizosaccharomyces pombe gene crm1+ which encodes a 115-kDa protein preferentially localized in the nucleus and its periphery. J. Cell Biol. 108:1195–1207.
  • Agami, R., and Bernards R.. 2000. Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102:55–66.
  • Arts, G. J., Kuersten S., Romby P., Ehresmann B., and Mattaj I. W.. 1998. The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J. 17:7430–7441.
  • Askjaer, P., Bachi A., Wilm M., Bischoff F. R., Weeks D. L., Ogniewski V., Ohno M., Niehrs C., Kjems J., Mattaj I. W., and Fornerod M.. 1999. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase. Mol. Cell. Biol. 19:6276–6285.
  • Bastos, R., Lin A., Enarson M., and Burke B.. 1996. Targeting and function in mRNA export of nuclear pore complex protein Nup153. J. Cell Biol. 134:1141–1156.
  • Bastos, R., Ribas-de-Pouplana L., Enarson M., Bodoor K., and Burke B.. 1997. Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J. Cell Biol. 137:989–1000.
  • Becskei, A., and Mattaj I. W.. 2003. The strategy for coupling the RanGTP gradient to nuclear protein export. Proc. Natl. Acad. Sci. USA 100:1717–1722.
  • Ben-Efraim, I., and Gerace L.. 2001. Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152:411–418.
  • Brummelkamp, T. R., Bernards R., and Agami R.. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553.
  • Cronshaw, J. M., Krutchinsky A. N., Zhang W., Chait B. T., and Matunis M. J.. 2002. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158:915–927.
  • Davis, L. I., and Blobel G.. 1987. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA 84:7552–7556.
  • Delphin, C., Guan T., Melchior F., and Gerace L.. 1997. RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol. Biol. Cell 8:2379–2390.
  • Elbashir, S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., and Tuschl T.. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.
  • Englmeier, L., Olivo J. C., and Mattaj I. W.. 1999. Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr. Biol. 9:30–41.
  • Favreau, C., Worman H. J., Wozniak R. W., Frappier T., and Courvalin J. C.. 1996. Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Biochemistry 35:8035–8044.
  • Fischer, U., Huber J., Boelens W. C., Mattaj I. W., and Lührmann R.. 1995. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483.
  • Fornerod, M., Boer J., van-Baal S., Jaeglé M., von-Lindern M., Murti K. G., Davis D., Bonten J., Buijs A., and Grosveld G.. 1995. Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene 10:1739–1748.
  • Fornerod, M., Boer J., van-Baal S., Morreau H., and Grosveld G.. 1996. Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN. Oncogene 13:1801–1808.
  • Fornerod, M., Ohno M., Yoshida M., and Mattaj I. W.. 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060.
  • Fornerod, M., van-Deursen J., van-Baal S., Reynolds A., Davis D., Murti K. G., Fransen J., and Grosveld G.. 1997. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16:807–816.
  • Fukuda, M., Asano S., Nakamura T., Adachi M., Yoshida M., Yanagida M., and Nishida E.. 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311.
  • Goldberg, M. W., and Allen T. D.. 1993. The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J. Cell Sci. 106:261–274.
  • Görlich, D. 1998. Transport into and out of the cell nucleus. EMBO J. 17:2721–2727.
  • Görlich, D., and Kutay U.. 1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15:607–660.
  • Griffis, E. R., Xu S., and Powers M. A.. 2003. Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol. Biol. Cell 14:600–610.
  • Harel, A., Orjalo A. V., Vincent T., Lachish-Zalait A., Vasu S., Shah S., Zimmerman E., Elbaum M., and Forbes D. J.. 2003. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11:853–864.
  • Hase, M. E., and Cordes V. C.. 2003. Direct interaction with nup153 mediates binding of tpr to the periphery of the nuclear pore complex. Mol. Biol. Cell 14:1923–1940.
  • Henderson, B. R., and Eleftheriou A.. 2000. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp. Cell Res. 256:213–224.
  • Hurwitz, M. E., Strambio-de-Castillia C., and Blobel G.. 1998. Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex. Proc. Natl. Acad. Sci. USA 95:11241–11245.
  • Jarnik, M., and Aebi U.. 1991. Toward a more complete 3-D structure of the nuclear pore complex. J. Struct. Biol. 107:291–308.
  • Kaffman, A., Rank N. M., O'Neill E. M., Huang L. S., and O'Shea E. K.. 1998. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396:482–486.
  • Kasper, L. H., Brindle P. K., Schnabel C. A., Pritchard C. E. J., Cleary M. L., and van Deursen J. M. A.. 1999. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol. Cell. Biol. 19:764–776.
  • Kehlenbach, R. H., Dickmanns A., Kehlenbach A., Guan T., and Gerace L.. 1999. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J. Cell Biol. 145:645–657.
  • Kraemer, D., Wozniak R. W., Blobel G., and Radu A.. 1994. The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc. Natl. Acad. Sci. USA 91:1519–1523.
  • Kudo, N., Khochbin S., Nishi K., Kitano K., Yanagida M., Yoshida M., and Horinouchi S.. 1997. Molecular cloning and cell cycle-dependent expression of mammalian CRM1, a protein involved in nuclear export of proteins. J. Biol. Chem. 272:29742–29751.
  • Kudo, N., Wolff B., Sekimoto T., Schreiner E. P., Yoneda Y., Yanagida M., Horinouchi S., and Yoshida M.. 1998. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242:540–547.
  • Kutay, U., Izaurralde E., Bischoff F. R., Mattaj I. W., and Görlich D.. 1997. Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J. 16:1153–1163.
  • Lipowsky, G., Bischoff F. R., Schwarzmaier P., Kraft R., Kostka S., Hartmann E., Kutay U., and Görlich D.. 2000. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 19:4362–4371.
  • Macaulay, C., Meier E., and Forbes D. J.. 1995. Differential mitotic phosphorylation of proteins of the nuclear pore complex. J. Biol. Chem. 270:254–262.
  • Mahajan, R., Delphin C., Guan T., Gerace L., and Melchior F.. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107.
  • Matsuoka, Y., Takagi M., Ban T., Miyazaki M., Yamamoto T., Kondo Y., and Yoneda Y.. 1999. Identification and characterization of nuclear pore subcomplexes in mitotic extract of human somatic cells. Biochem. Biophys. Res. Commun. 254:417–423.
  • Matunis, M. J., Coutavas E., and Blobel G.. 1996. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135:1457–1470.
  • Matunis, M. J., Wu J., and Blobel G.. 1998. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140:499–509.
  • Miller, M. W., Caracciolo M. R., Berlin W. K., and Hanover J. A.. 1999. Phosphorylation and glycosylation of nucleoporins. Arch. Biochem. Biophys. 367:51–60.
  • Moroianu, J., Blobel G., and Radu A.. 1995. Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc. Natl. Acad. Sci. USA 92:2008–2011.
  • Nakielny, S., and Dreyfuss G.. 1999. Transport of proteins and RNAs in and out of the nucleus. Cell 99:677–690.
  • Neville, M., and Rosbash M.. 1999. The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J. 18:3746–3756.
  • Ossareh-Nazari, B., Bachelerie F., and Dargemont C.. 1997. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278:141–144.
  • Pante, N., Bastos R., McMorrow I., Burke B., and Aebi U.. 1994. Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J. Cell Biol. 126:603–617.
  • Reichelt, R., Holzenburg A., Buhle E. L., Jr., Jarnik M., Engel A., and Aebi U.. 1990. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110:883–894.
  • Ribbeck, K., and Görlich D.. 2001. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20:1320–1330.
  • Ribbeck, K., Kutay U., Paraskeva E., and Görlich D.. 1999. The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr. Biol. 9:47–50.
  • Ris, H., and Malecki M.. 1993. High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J. Struct. Biol. 111:148–157.
  • Rout, M. P., and Aitchison J. D.. 2001. The nuclear pore complex as a transport machine. J. Biol. Chem. 276:16593–16596.
  • Singh, B. B., Patel H. H., Roepman R., Schick D., and Ferreira P. A.. 1999. The zinc finger cluster domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. J. Biol. Chem. 274:37370–37378.
  • Stade, K., Ford C. S., Guthrie C., and Weis K.. 1997. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050.
  • Ullman, K. S., Powers M. A., and Forbes D. J.. 1997. Nuclear export receptors: from importin to exportin. Cell 90:967–970.
  • Ullman, K. S., Shah S., Powers M. A., and Forbes D. J.. 1999. The nucleoporin nup153 plays a critical role in multiple types of nuclear export. Mol. Biol. Cell 10:649–664.
  • van-Deursen, J., Boer J., Kasper L., and Grosveld G.. 1996. G2 arrest and impaired nucleocytoplasmic transport in mouse embryos lacking the proto-oncogene CAN/Nup214. EMBO J. 15:5574–5583.
  • Vasu, S. K., and Forbes D. J.. 2001. Nuclear pores and nuclear assembly. Curr. Opin. Cell Biol. 13:363–375.
  • Walther, T. C., Alves A., Pickersgill H., Loiodice I., Hetzer M., Galy V., Hulsmann B. B., Kocher T., Wilm M., Allen T., Mattaj I. W., and Doye V.. 2003. The conserved Nup107-160 complex is critical for nuclear pore complex assembly. Cell 113:195–206.
  • Walther, T. C., Askjaer P., Gentzel M., Habermann A., Griffiths G., Wilm M., Mattaj I. W., and Hetzer M.. 2003. RanGTP mediates nuclear pore complex assembly. Nature 424:689–694.
  • Walther, T. C., Fornerod M., Pickersgill H., Goldberg M., Allen T. D., and Mattaj I. W.. 2001. The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins. EMBO J. 20:5703–5714.
  • Walther, T. C., Pickersgill H. S., Cordes V. C., Goldberg M. W., Allen T. D., Mattaj I. W., and Fornerod M.. 2002. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol. 158:63–77.
  • Weis, K. 2003. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451.
  • Wen, W., Harootunian A. T., Adams S. R., Feramisco J., Tsien R. Y., Meinkoth J. L., and Taylor S. S.. 1994. Heat-stable inhibitors of cAMP-dependent protein kinase carry a nuclear export signal. J. Biol. Chem. 269:32214–32220.
  • Wu, J., Matunis M. J., Kraemer D., Blobel G., and Coutavas E.. 1995. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270:14209–14213.
  • Yaseen, N. R., and Blobel G.. 1997. Cloning and characterization of human karyopherin beta3. Proc. Natl. Acad. Sci. USA 94:4451–4456.
  • Yokoyama, N., Hayashi N., Seki T., Pante N., Ohba T., Nishii K., Kuma K., Hayashida T., Miyata T., and Aebi U.. 1995. A giant nucleopore protein that binds Ran/TC4. Nature 376:184–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.