12
Views
29
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Participation of the Ubiquitin-Conjugating Enzyme UBE2E3 in Nedd4-2-Dependent Regulation of the Epithelial Na+ Channel

&
Pages 2397-2409 | Received 14 May 2003, Accepted 13 Dec 2003, Published online: 27 Mar 2023

REFERENCE

  • Abriel, H., Kamynina E., Horisberger J.-D., and Staub O.. 2000. Regulation of the cardiac voltage-gated Na+ channel (rH1) by the ubiquitin-protein ligase Nedd4. FEBS Lett. 466:377–380.
  • Abriel, H., Loffing J., Rebhun J. F., Pratt J. H., Horisberger J.-D., Rotin D., and Staub O.. 1999. Defective regulation of the epithelial Na+ channel (ENaC) by Nedd4 in Liddle's syndrome. J. Clin. Investig. 103:667–673.
  • Anan, T., Nagata Y., Koga H., Honda Y., Yabuki N., Miyamoto C., Kuwano A., Matusuda I., Endo F., Saya H., and Nakao M.. 1999. Human ubiquitin-protein ligase Nedd4: expression, subcellular localization, and selective interaction with ubiquitin-conjugating enzymes. Genes Cells 3:751–763.
  • Aristarkhov, A., Eytan E., Moghe A., Admon A., Hershko A., and Ruderman J. V.. 1996. E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc. Natl. Acad. Sci. USA 93:4294–4299.
  • Asher, C., Chigaev A., and Garty H.. 2001. Characterization of interactions between Nedd4 and β and γENaC using surface plasmon resonance. Biochem. Biophys. Res. Commun. 286:1228–1231.
  • Asher, C., Sinha I., and Garty H.. 2003. Characterization of the interactions between Nedd4-2, ENaC, and sgk-1 using surface plasmon resonance. Biochim. Biophys. Acta 1612:59–64.
  • Auberson, M., Hoffmann-Pochon N., Vandewalle A., Kellenberger S., and Schild L.. 2003. Epithelial Na+ channel mutants causing Liddle's syndrome retain ability to respond to aldosterone and vasopressin. Am. J. Physiol. 285:F459–F471.
  • Bens, M., Vallet V., Cluzeaud F., Pascual-Letallec L., Kahn A., Rafestin-Oblin M. E., Rossier B. C., and Vandewalle A.. 1999. Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. J. Am. Soc. Nephrol. 10:923–934.
  • Bull, J. H., Ellison G., Patel A., Muir G., Walker M., Underwood M., Khan F., and Paskins L.. 2001. Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br. J. Cancer 84:1512–1519.
  • Chabardès-Garonne, D., Méjean A., Aude J.-C., Chevel L., Di Stefano A., Gaillard M.-C., Imbert-Teboul M., Wittner M., Balian C., Anthouard V., Robert C., Ségurens B., Wincker P., Weissenbach J., Doucet A., and Elalouf J. M.. 2003. A panoramic view of gene expression in the human kidney. Proc. Natl. Acad. Sci. USA 100:13710–13715.
  • Debonneville, C., Flores S. Y., Kamynina E., Plant P. J., Tauxe C., Thomas M. A., Munster C., Chraibi A., Pratt J. H., Horisberger J. D., Pearce D., Loffing J., and Staub O.. 2001. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 20:7052–7059.
  • Dinudom, A., Harvey B. J., Komwatana P., Young J. A., Kumar S., and Cook D. I.. 1998. Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proc. Natl. Acad. Sci. USA 95:7169–7173.
  • Dunn, R., and Hicke L.. 2001. Domains of the Rsp5 ubiquitin-protein ligase required for receptor-mediated and fluid-phase endocytosis. Mol. Biol. Cell 12:421–435.
  • Farr, T. J., Coddington-Lawson S. J., Snyder P. M., and McDonald F. J.. 2000. Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits. Biochem. J. 345:503–509.
  • Firsov, D., Schild L., Gautschi I., Mérillat A.-M., Schneeberger E., and Rossier B. C.. 1996. Cell surface expression of the epithelial Na+ channel and a mutant causing Liddle syndrome: a quantitative approach. Proc. Natl. Acad. Sci. USA 93:15370–15375.
  • Fotia, A. B., Dinudom A., Shearwin K. E., Koch J. P., Korbmacher C., Cook D. I., and Kumar S.. 2003. The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J. 17:70–72.
  • Glickman, M. H., and Ciechanover A.. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82:373–428.
  • Goulet, C. C., Volk K. A., Adams C. M., Prince L. S., Stokes J. B., and Snyder P. M.. 1998. Inhibition of the epithelial Na+ channel by interaction of Nedd4 with a PY motif deleted in Liddle's syndrome. J. Biol. Chem. 273:30012–30017.
  • Grossman, S. R., Deato M. E., Brignone C., Chan H. M., Kung A. L., Tagami H., Nakatani Y., and Livingston D. M.. 2003. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300:342–344.
  • Hansson, J. H., Nelson-Williams C., Suzuki H., Schild L., Shimkets R. A., Lu Y., Canessa C. M., Iwasaki T., Rossier B. C., and Lifton R. P.. 1995. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat. Genet. 11:76–82.
  • Harvey, K. F., Dinudom A., Cook D. I., and Kumar S.. 2001. The Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J. Biol. Chem. 276:8597–8601.
  • Harvey, K. F., Dinudom A., Komwatana P., Jolliffe C. N., Day M. L., Parasivam G., Cook D. I., and Kumar S.. 1999. All three WW domains of murine Nedd4 are involved in the regulation of epithelial sodium channels by intracellular Na+. J. Biol. Chem. 274:12525–12530.
  • Hatakeyama, S., Jensen J. P., and Weissman A. M.. 1997. Subcellular localization and ubiquitin-conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases. J. Biol. Chem. 272:15085–15092.
  • Helliwell, S. B., Losko S., and Kaiser C. A.. 2001. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153:649–662.
  • Henry, P. C., Kanelis V., O'Brien C. M., Kim B., Gautschi I., Forman-Kay J., Schild L., and Rotin D.. 2003. Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel. J. Biol. Chem. 278:20019–20028.
  • Hershko, A., and Ciechanover A.. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–479.
  • Hicke, L., and Riezman H.. 1996. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287.
  • Huang, L., Kinnucan E., Wang G., Beaudenon S., Howley P. M., Huibregtse J. M., and Pavletich N. P.. 1999. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–1326.
  • Huibregtse, J. M., Scheffner M., Beaudenon S., and Howley P. M.. 1995. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92:2563–2567.
  • Inoue, J., Iwaoka T., Tokunaga H., Takamune K., Naomi S., Araki M., Takahama K., Yamaguchi K., and Tomita K.. 1998. A family with Liddle's syndrome caused by a new missense mutation in the β subunit of the epithelial sodium channel. J. Clin. Endocrinol. Metab. 83:2210–2213.
  • Ito, K., Adachi S., Iwakami R., Yasuda H., Muto Y., Seki N., and Okano Y.. 2001. N-terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Eur. J. Biochem. 268:2725–2732.
  • Ito, K., Kato S., Matsuda Y., Kimura M., and Okano Y.. 1999. cDNA cloning, characterization, and chromosome mapping of UBE2E3 (alias UbcH9), encoding an N-terminally extended human ubiquitin-conjugating enzyme. Cytogenet. Cell. Genet. 84:99–104.
  • Kaiser, P., Seufert W., Höfferer L., Kofler B., Sachsenmaier C., Herzog H., Jentsch S., Schweiger M., and Schneider R.. 1994. A human ubiquitin-conjugating enzyme homologous to yeast UBC8. J. Biol. Chem. 269:8797–8802.
  • Kamynina, E., Debonneville C., Bens M., Vandewalle A., and Staub O.. 2001. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J. 15:204–214.
  • Kamynina, E., Tauxe C., and Staub O.. 2001. Differential characteristics of two human Nedd4 proteins with respect to epithelial Na+ channel regulation. Am. J. Physiol. 281:F469–F477.
  • Kanelis, V., Farrow N. A., Kay L. E., Rotin D., and Forman-Kay J. D.. 1998. NMR studies of tandem WW domains of Nedd4 in complex with a PY motif-containing region of the epithelial sodium channel. Biochem. Cell Biol. 76:341–350.
  • Kanelis, V., Rotin D., and Forman-Kay J. D.. 2001. Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat. Struct. Biol. 8:1–6.
  • Katzmann, D. J., Babst M., and Emr S. D.. 2001. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155.
  • Kellenberger, S., Gautschi I., Rossier B. C., and Schild L.. 1998. Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the xenopus oocyte expression system. J. Clin. Investig. 101:2741–2750.
  • Kellenberger, S., and Schild L.. 2002. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82:735–767.
  • Koegl, M., Hoppe T., Schlenker S., Ulrich H. D., Mayer T. U., and Jentsch S.. 1999. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644.
  • Konstas, A. A., Shearwin-Whyatt L. M., Fotia A. B., Degger B., Riccardi D., Cook D. I., Korbmacher C., and Kumar S.. 2002. Regulation of the epithelial sodium channel by N4WBP5A, a novel Nedd4/Nedd4-2-interacting protein. J. Biol. Chem. 277:29406–29416.
  • Liddle, G. W., Bledsoe T., and Coppage W. S., Jr. 1963. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans. Assoc. Am. Physicians 76:199–213.
  • Lott, J. S., Coddington-Lawson S. J., Teesdale-Spittle P. H., and McDonald F. J.. 2002. A single WW domain is the predominant mediator of the interaction between the human ubiquitin-protein ligase Nedd4 and the human epithelial sodium channel. Biochem. J. 361:481–488.
  • Malik, B., Schlanger L., Al-Khalili O., Bao H. F., Yue G., Price S. R., Mitch W. E., and Eaton D. C.. 2001. Enac degradation in A6 cells by the ubiquitin-proteosome proteolytic pathway. J. Biol. Chem. 276:12903–12910.
  • Matuschewski, K., Hauser H.-P., Treier M., and Jentsch S.. 1996. Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J. Biol. Chem. 271:2789–2794.
  • May, A., Puoti A., Gaeggeler H.-P., Horisberger J.-D., and Rossier B. C.. 1997. Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel α subunit in A6 renal cells. J. Am. Soc. Nephrol. 8:1813–1822.
  • McDonald, F. J., Western A. H., McNeil J. D., Thomas B. C., Olson D. R., and Snyder P. M.. 2002. Ubiquitin-protein ligase WWP2 binds to and downregulates the epithelial Na+ channel. Am. J. Physiol. 283:F431–F436.
  • Nelson, R. M., and Long G. L.. 1989. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal. Biochem. 180:147–151.
  • Nuber, U., and Scheffner M.. 1999. Identification of determinants in E2 ubiquitin-conjugating enzymes required for hect E3 ubiquitin-protein ligase interaction. J. Biol. Chem. 274:7576–7582.
  • Nuber, U., Schwarz S., Kaiser P., Schneider R., and Scheffner M.. 1996. Cloning of human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and characterization of their interaction with E6-AP and Rsp5. J. Biol. Chem. 271:2795–2800.
  • Nuber, U., Schwarz S. E., and Scheffner M.. 1998. The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur. J. Biochem. 234:643–649.
  • Pear, W. S., Nolan G. P., Scott M. L., and Baltimore D.. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.
  • Pirozzi, G., McConnell S. J., Uveges A. J., Carter J. M., Sparks A. B., Kay B. K., and Fowlkes D. M.. 1997. Identification of novel human WW domain-containing proteins by cloning of ligand targets. J. Biol. Chem. 272:14611–14616.
  • Plafker, S. M., and Macara I. G.. 2000. Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2. EMBO J. 19:5502–5513.
  • Plafker, S. M., and Macara I. G.. 2002. Ribosomal protein L12 uses a distinct nuclear import pathway mediated by importin 11. Mol. Biol. Cell 22:1266–1275.
  • Puoti, A., May A., Rossier B. C., and Horisberger J.-D.. 1998. Novel isoforms of the α and γ subunits of the Xenopus epithelial Na+ channel provide information about the amiloride binding site and extracellular sodium sensing. Proc. Natl. Acad. Sci. USA 94:5949–5954.
  • Rotin, D., Staub O., and Haguenauer-Tsapis R.. 2000. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5 family of ubiquitin-protein ligases. J. Membr. Biol. 176:1–17.
  • Schild, L., Canessa C. M., Shimkets R. A., Warnock D. G., Lifton R. P., and Rossier B. C.. 1995. A mutation in the epithelial sodium channel causing Liddle's disease increases channel activity in the Xenopus laevis oocyte expression system. Proc. Natl. Acad. Sci. USA 92:5699–5703.
  • Schild, L., Lu Y., Gautschi I., Schneeberger E., Lifton R. P., and Rossier B. C.. 1996. Identification of a PY motif in the epithelial Na+ channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J. 15:2381–2387.
  • Schwake, M., Friedrich T., and Jentsch T. J.. 2001. An internalization signal in ClC-5, an endosomal Cl-channel mutated in Dent's disease. J. Biol. Chem. 276:12049–12054.
  • Shi, H., Asher C., Chigaev A., Yung Y., Reuveny E., Seger R., and Garty H.. 2002. Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an EKR-mediated phosphorylation. J. Biol. Chem. 277:13539–13547.
  • Shimkets, R. A., Lifton R. P., and Canessa C. M.. 1997. The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J. Biol. Chem. 272:25537–25541.
  • Shimkets, R. A., Warnock D. G., Bositis C. M., Nelson-Williams C., Hansson J. H., Schambelan M., Gill J. R., Ulick S., Milora R. V., Findling J. W., Canessa C. M., Rossier B. C., and Lifton R. P.. 1994. Liddle's syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 79:407–414.
  • Snyder, P. M., Olson D. R., McDonald F. J., and Bucher D. B.. 2001. Multiple WW domains, but not the C2 domain, are required for the inhibition of ENaC by human Nedd4. J. Biol. Chem. 276:28321–28326.
  • Snyder, P. M., Olson D. R., and Thomas B. C.. 2002. Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J. Biol. Chem. 277:5–8.
  • Snyder, P. M., Price M. P., McDonald F. J., Adams C. M., Volk K. A., Zeiher B. G., Stokes J. B., and Welsh M. J.. 1995. Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83:969–978.
  • Soetens, O., De Craene J. O., and Andre B.. 2001. Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J. Biol. Chem. 276:43949–43957.
  • Staub, O., Dho S., Henry P. C., Correa J., Ishikawa T., McGlade J., and Rotin D.. 1996. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 15:2371–2380.
  • Staub, O., Gautschi I., Ishikawa T., Breitschopf K., Ciechanover A., Schild L., and Rotin D.. 1997. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J. 16:6325–6336.
  • Tamura, H., Schild L., Enomoto N., Matsui N., Marumo F., Rossier B. C., and Sasaki S.. 1996. Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J. Clin. Investig. 97:1780–1784.
  • Vojtek, A. B., Hollenberg S. M., and Cooper J. A.. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.