132
Views
279
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Histone H3-K9 Methyltransferase ESET Is Essential for Early Development

, , , &
Pages 2478-2486 | Received 30 Oct 2003, Accepted 19 Dec 2003, Published online: 27 Mar 2023

REFERENCE

  • Beard, C., Li E., and Jaenisch R.. 1995. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev. 9:2325–2334.
  • Bourc'his, D., Xu G. L., Lin C. S., Bollman B., and Bestor T. H.. 2001. Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539.
  • Dodge, J. E., List A. F., and Futscher B. W.. 1998. Selective variegated methylation of the p15 CpG island in acute myeloid leukemia. Int. J. Cancer 78:561–567.
  • Donohoe, M. E., Zhang X., McGinnis L., Biggers J., Li E., and Shi Y.. 1999. Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol. Cell. Biol. 19:7237–7244.
  • Gaudet, F., Hodgson J. G., Eden A., Jackson-Grusby L., Dausman J., Gray J. W., Leonhardt H., and Jaenisch R.. 2003. Induction of tumors in mice by genomic hypomethylation. Science 300:489–492.
  • Hata, K., Okano M., Lei H., and Li E.. 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993.
  • Jackson, J. P., Lindroth A. M., Cao X., and Jacobsen S. E.. 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560.
  • Jaenisch, R., and Bird A.. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33(Suppl.):245–254.
  • Kang, Y. K., Park J. S., Lee C. S., Yeom Y. I., Chung A. S., and Lee K. K.. 1999. Efficient integration of short interspersed element-flanked foreign DNA via homologous recombination. J. Biol. Chem. 274:36585–36591.
  • Lagger, G., O'Carroll D., Rembold M., Khier H., Tischler J., Weitzer G., Schuettengruber B., Hauser C., Brunmeir R., Jenuwein T., and Seiser C.. 2002. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21:2672–2681.
  • Lane, N., Dean W., Erhardt S., Hajkova P., Surani A., Walter J., and Reik W.. 2003. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93.
  • Lehnertz, B., Ueda Y., Derijck A. A., Braunschweig U., Perez-Burgos L., Kubicek S., Chen T., Li E., Jenuwein T., and Peters A. H.. 2003. Suv39h-mediated histone h3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13:1192–1200.
  • Li, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3:662–673.
  • Li, E., Beard C., and Jaenisch R.. 1993. Role for DNA methylation in genomic imprinting. Nature 366:362–365.
  • Li, E., Bestor T. H., and Jaenisch R.. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926.
  • Mountford, P., Zevnik B., Duwel A., Nichols J., Li M., Dani C., Robertson M., Chambers I., and Smith A.. 1994. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc. Natl. Acad. Sci. USA 91:4303–4307.
  • Nichols, J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Scholer H., and Smith A.. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391.
  • O'Carroll, D., Erhardt S., Pagani M., Barton S. C., Surani M. A., and Jenuwein T.. 2001. The Polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 21:4330–4336.
  • O'Carroll, D., Scherthan H., Peters A. H., Opravil S., Haynes A. R., Laible G., Rea S., Schmid M., Lebersorger A., Jerratsch M., Sattler L., Mattei M. G., Denny P., Brown S. D., Schweizer D., and Jenuwein T.. 2000. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol. 20:9423–9433.
  • Ogawa, H., Ishiguro K., Gaubatz S., Livingston D. M., and Nakatani Y.. 2002. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296:1132–1136.
  • Okano, M., Bell D. W., Haber D. A., and Li E.. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257.
  • Rea, S., Eisenhaber F., O'Carroll D., Strahl B. D., Sun Z. W., Schmid M., Opravil S., Mechtler K., Ponting C. P., Allis C. D., and Jenuwein T.. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599.
  • Schultz, D. C., Ayyanathan K., Negorev D., Maul G. G., and Rauscher F. J.. 2002. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16:919–932.
  • Surani, A., and Smith A.. 2003. Differentiation and gene regulation. Programming, reprogramming and regeneration. Curr. Opin. Genet. Dev. 13:445–447.
  • Tachibana, M., Sugimoto K., Fukushima T., and Shinkai Y.. 2001. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276:25309–25317.
  • Tachibana, M., Sugimoto K., Nozaki M., Ueda J., Ohta T., Ohki M., Fukuda M., Takeda N., Niida H., Kato H., and Shinkai Y.. 2002. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16:1779–1791.
  • Tamaru, H., and Selker E. U.. 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283.
  • Tamaru, H., Zhang X., McMillen D., Singh P. B., Nakayama J., Grewal S. I., Allis C. D., Cheng X., and Selker E. U.. 2003. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet. 34:75–79.
  • Wang, H., An W., Cao R., Xia L., Erdjument-Bromage H., Chatton B., Tempst P., Roeder R. G., and Zhang Y.. 2003. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 12:475–487.
  • Xin, Z., Tachibana M., Guggiari M., Heard E., Shinkai Y., and Wagstaff J.. 2003. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J. Biol. Chem. 278:14996–15000.
  • Yang, L., Xia L., Wu D. Y., Wang H., Chansky H. A., Schubach W. H., Hickstein D. D., and Zhang Y.. 2002. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21:148–152.
  • Zhang, Y., and Reinberg D.. 2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15:2343–2360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.