23
Views
39
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Protein Kinase Snf1 Is Required for Tolerance to the Ribonucleotide Reductase Inhibitor Hydroxyurea

, &
Pages 2560-2572 | Received 20 Aug 2003, Accepted 22 Dec 2003, Published online: 27 Mar 2023

REFERENCE

  • Alepuz, P. M., Cunningham K. W., and Estruch F.. 1997. Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol. Microbiol. 26:91–98.
  • Ashrafi, K., Lin S. S., Manchester J. K., and Gordon J. I.. 2000. Sip2p and its partner Snf1p kinase affect aging in S. cerevisiae. Genes Dev. 14:1872–1885.
  • Balciunas, D., and Ronne H.. 1999. Yeast genes GIS1-4: multicopy suppressors of the Gal phenotype of snf1 mig1 srb8/10/11 cells. Mol. Gen. Genet. 262:589–599.
  • Carlson, M. 1999. Glucose repression in yeast. Curr. Opin. Microbiol. 2:202–207.
  • Celenza, J. L., and Carlson M.. 1989. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034–5044.
  • Chabes, A., Domkin V., Larsson G., Liu A., Graslund A., Wijmenga S., and Thelander L.. 2000. Yeast ribonucleotide reductase has a heterodimeric iron-radical-containing subunit. Proc. Natl. Acad. Sci. USA 97:2474–2479.
  • Chabes, A., Domkin V., and Thelander L.. 1999. Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J. Biol. Chem. 274:36679–36683.
  • Chabes, A., Georgieva B., Domkin V., Zhao X., Rothstein R., and Thelander L.. 2003. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112:391–401.
  • Cullen, P. J., and Sprague G. F., Jr. 2000. Glucose depletion causes haploid invasive growth in yeast. Proc. Natl. Acad. Sci. USA 97:13619–13624.
  • De Vit, M. J., Waddle J. A., and Johnston M.. 1997. Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8:1603–1618.
  • Domkin, V., Thelander L., and Chabes A.. 2002. Yeast DNA damage-inducible Rnr3 has a very low catalytic activity strongly stimulated after the formation of a cross-talking Rnr1/Rnr3 complex. J. Biol. Chem. 277:18574–18578.
  • Eklund, H., Uhlin U., Farnegardh M., Logan D. T., and Nordlund P.. 2001. Structure and function of the radical enzyme ribonucleotide reductase. Prog. Biophys. Mol. Biol. 77:177–268.
  • Elledge, S. J., and Davis R. W.. 1990. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev. 4:740–751.
  • Estruch, F., and Carlson M.. 1993. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:3872–3881.
  • Estruch, F., Treitel M. A., Yang X., and Carlson M.. 1992. N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics 132:639–650.
  • Fauchon, M., Lagniel G., Aude J. C., Lombardia L., Soularue P., Petat C., Marguerie G., Sentenac A., Werner M., and Labarre J.. 2002. Sulfur sparing in the yeast proteome in response to sulfur demand. Mol. Cell 9:713–723.
  • Foiani, M., Pellicioli A., Lopes M., Lucca C., Ferrari M., Liberi G., Muzi Falconi M., and Plevani P.. 2000. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat. Res. 451:187–196.
  • Gasch, A. P., Huang M., Metzner S., Botstein D., Elledge S. J., and Brown P. O.. 2001. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 12:2987–3003.
  • Ge, J., Perlstein D. L., Nguyen H. H., Bar G., Griffin R. G., and Stubbe J.. 2001. Why multiple small subunits (Y2 and Y4) for yeast ribonucleotide reductase? Toward understanding the role of Y4. Proc. Natl. Acad. Sci. USA 98:10067–10072.
  • Giaever, G., Chu A. M., Ni L., Connelly C., Riles L., Veronneau S., Dow S., Lucau-Danila A., Anderson K., Andre B., Arkin A. P., Astromoff A., El-Bakkoury M., Bangham R., Benito R., Brachat S., Campanaro S., Curtiss M., Davis K., Deutschbauer A., Entian K. D., Flaherty P., Foury F., Garfinkel D. J., Gerstein M., Gotte D., Guldener U., Hegemann J. H., Hempel S., Herman Z., Jaramillo D. F., Kelly D. E., Kelly S. L., Kotter P., LaBonte D., Lamb D. C., Lan N., Liang H., Liao H., Liu L., Luo C., Lussier M., Mao R., Menard P., Ooi S. L., Revuelta J. L., Roberts C. J., Rose M., Ross-Macdonald P., Scherens B., Schimmack G., Shafer B., Shoemaker D. D., Sookhai-Mahadeo S., Storms R. K., Strathern J. N., Valle G., Voet M., Volckaert G., Wang C. Y., Ward T. R., Wilhelmy J., Winzeler E. A., Yang Y., Yen G., Youngman E., Yu K., Bussey H., Boeke J. D., Snyder M., Philippsen P., Davis R. W., and Johnston M.. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391.
  • Hardie, D. G., Carling D., and Carlson M.. 1998. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67:821–855.
  • Hardie, D. G., and Hawley S. A.. 2001. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23:1112–1119.
  • Hong, S. P., Leiper F. C., Woods A., Carling D., and Carlson M.. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA 100:8839–8843.
  • Honigberg, S. M., and Lee R. H.. 1998. Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:4548–4555.
  • Huang, M., Zhou Z., and Elledge S. J.. 1998. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94:595–605.
  • Hutter, K. J., and Eipel H. E.. 1979. Microbial determinations by flow cytometry. J. Gen. Microbiol. 113:369–375.
  • Jelinsky, S. A., Estep P., Church G. M., and Samson L. D.. 2000. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell. Biol. 20:8157–8167.
  • Jelinsky, S. A., and Samson L. D.. 1999. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl. Acad. Sci. USA 96:1486–1491.
  • Jiang, R., and Carlson M.. 1996. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 10:3105–3115.
  • Jiang, R., and Carlson M.. 1997. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:2099–2106.
  • Kemp, B. E., Stapleton D., Campbell D. J., Chen Z. P., Murthy S., Walter M., Gupta A., Adams J. J., Katsis F., Van Denderen B., Jennings I. G., Iseli T., Michell B. J., and Witters L. A.. 2003. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 31:162–168.
  • Koc, A., Wheeler L. J., Mathews C. K., and Merrill G. F.. 2004. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J. Biol. Chem. 279:223–230.
  • Kuchin, S., Vyas V. K., and Carlson M.. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22:3994–4000.
  • Leech, A., Nath N., McCartney R. R., and Schmidt M. C.. 2003. Isolation of mutations in the catalytic domain of the Snf1 kinase that render its activity independent of the Snf4 subunit. Eukaryot. Cell 2:265–273.
  • Leff, T. 2003. AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem. Soc. Trans. 31:224–227.
  • Lin, S. S., Manchester J. K., and Gordon J. I.. 2003. Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J. Biol. Chem. 278:13390–13397.
  • Lo, W. S., Duggan L., Tolga N. C., Emre, Belotserkovskya R., Lane W. S., Shiekhattar R., and Berger S. L.. 2001. Snf1—a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146.
  • Longtine, M. S., McKenzie III A., Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., and Pringle J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Lutfiyya, L. L., Iyer V. R., DeRisi J., DeVit M. J., Brown P. O., and Johnston M.. 1998. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150:1377–1391.
  • Marsolier, M. C., Roussel P., Leroy C., and Mann C.. 2000. Involvement of the PP2C-like phosphatase Ptc2p in the DNA checkpoint pathways of Saccharomyces cerevisiae. Genetics 154:1523–1532.
  • McCartney, R. R., and Schmidt M. C.. 2001. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276:36460–36466.
  • Natarajan, K., Meyer M. R., Jackson B. M., Slade D., Roberts C., Hinnebusch A. G., and Marton M. J.. 2001. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21:4347–4368.
  • Nath, N., McCartney R. R., and Schmidt M. C.. 2002. Purification and characterization of Snf1 kinase complexes containing a defined beta subunit composition. J. Biol. Chem. 277:50403–50408.
  • Osborn, A. J., Elledge S. J., and Zou L.. 2002. Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol. 12:509–516.
  • Palecek, S. P., Parikh A. S., Huh J. H., and Kron S. J.. 2002. Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Mol. Microbiol. 45:453–469.
  • Purnapatre, K., Piccirillo S., Schneider B. L., and Honigberg S. M.. 2002. The CLN3/SWI6/CLN2 pathway and SNF1 act sequentially to regulate meiotic initiation in Saccharomyces cerevisiae. Genes Cells 7:675–691.
  • Sanz, P. 2003. Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem. Soc. Trans. 31:178–181.
  • Schmidt, M. C., and McCartney R. R.. 2000. Beta subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J. 19:4936–4943.
  • Schuller, H. J. 2003. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43:139–160.
  • Scott, J. W., Norman D. G., Hawley S. A., Kontogiannis L., and Hardie D. G.. 2002. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J. Mol. Biol. 317:309–323.
  • Straight, A. F., Marshall W. F., Sedat J. W., and Murray A. W.. 1997. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277:574–578.
  • Sutherland, C. M., Hawley S. A., McCartney R. R., Leech A., Stark M. J. R., Schmidt M. C., and Hardie D. G.. 2003. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr. Biol. 13:1299–1305.
  • Tercero, J. A., and Diffley J. F.. 2001. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553–557.
  • Tercero, J. A., Longhese M. P., and Diffley J. F.. 2003. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11:1323–1336.
  • Thompson-Jaeger, S., Francois J., Gaughran J. P., and Tatchell K.. 1991. Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129:697–706.
  • Vincent, O., Townley R., Kuchin S., and Carlson M.. 2001. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 15:1104–1114.
  • Vyas, V. K., Kuchin S., and Carlson M.. 2001. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158:563–572.
  • Wang, P. J., Chabes A., Casagrande R., Tian X. C., Thelander L., and Huffaker T. C.. 1997. Rnr4p, a novel ribonucleotide reductase small-subunit protein. Mol. Cell. Biol. 17:6114–6121.
  • Wang, Z., Wilson W. A., Fujino M. A., and Roach P. J.. 2001. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21:5742–5752.
  • Wilson, W. A., Hawley S. A., and Hardie D. G.. 1996. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1426–1434.
  • Zhao, X., Chabes A., Domkin V., Thelander L., and Rothstein R.. 2001. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 20:3544–3553.
  • Zhao, X., and Rothstein R.. 2002. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl. Acad. Sci. USA 99:3746–3751.
  • Zhou, B. B., and Elledge S. J.. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433–439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.