70
Views
141
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Differential Targeting of Two Distinct SWI/SNF-Related Drosophila Chromatin-Remodeling Complexes

, , , , &
Pages 3077-3088 | Received 04 Aug 2003, Accepted 14 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Armstrong, J. A., Papoulas O., Daubresse G., Sperling A. S., Lis J. T., Scott M. P., and Tamkun J. W.. 2002. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21:5245–5254.
  • Becker, P. B., and Horz W.. 2002. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71:247–273.
  • Beisel, C., Imhof A., Greene J., Kremmer E., and Sauer F.. 2002. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419:857–862.
  • Boyer, L. A., Logie C., Bonte E., Becker P. B., Wade P. A., Wolffe A. P., Wu C., Imbalzano A. N., and Peterson C. L.. 2000. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J. Biol. Chem. 275:18864–18870.
  • Cairns, B. R., Erdjument-Bromage H., Tempst P., Winston F., and Kornberg R. D.. 1998. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell 2:639–651.
  • Cairns, B. R., Kim Y. J., Sayre M. H., Laurent B. C., and Kornberg R. D.. 1994. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91:1950–1954.
  • Cairns, B. R., Lorch Y., Li Y., Zhang M., Lacomis L., Erdjument-Bromage H., Tempst P., Du J., Laurent B., and Kornberg R. D.. 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260.
  • Cairns, B. R., Schlichter A., Erdjument-Bromage H., Tempst P., Kornberg R. D., and Winston F.. 1999. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol. Cell 4:715–723.
  • Cho, H., Orphanides G., Sun X., Yang X. J., Ogryzko V., Lees E., Nakatani Y., and Reinberg D.. 1998. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18:5355–5363.
  • Collins, R. T., Furukawa T., Tanese N., and Treisman J. E.. 1999. Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J. 18:7029–7040.
  • Crosby, M. A., Miller C., Alon T., Watson K. L., Verrijzer C. P., Goldman-Levi R., and Zak N. B.. 1999. The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol. Cell. Biol. 19:1159–1170.
  • Dallas, P. B., Cheney I. W., Liao D., Bowrin V., Byam W., Pacchione S., Kobayashi R., Yaciuk P., and Moran E.. 1998. p300/CREB binding protein-related protein p270 is a component of mammalian SWI/SNF complexes. Mol. Cell. Biol. 18:3596–3603.
  • Damelin, M., Simon I., Moy T. I., Wilson B., Komili S., Tempst P., Roth F. P., Young R. A., Cairns B. R., and Silver P. A.. 2002. The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol. Cell 9:563–573.
  • Elfring, L. K., Daniel C., Papoulas O., Deuring R., Sarte M., Moseley S., Beek S. J., Waldrip W. R., Daubresse G., DePace A., Kennison J. A., and Tamkun J. W.. 1998. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148:251–265.
  • Gregory, S. L., Kortschak R. D., Kalionis B., and Saint R.. 1996. Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins. Mol. Cell. Biol. 16:792–799.
  • Harlow, E., and Lane D.. 1998. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Hassan, A. H., Prochasson P., Neely K. E., Galasinski S. C., Chandy M., Carrozza M. J., and Workman J. L.. 2002. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111:369–379.
  • Heberlein, U., and Tjian R.. 1988. Temporal pattern of alcohol dehydrogenase gene transcription reproduced by Drosophila stage-specific embryonic extracts. Nature 331:410–415.
  • Herrscher, R. F., Kaplan M. H., Lelsz D. L., Das C., Scheuermann R., and Tucker P. W.. 1995. The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev. 9:3067–3082.
  • Huang, Z., Li J., Sachs L. M., Cole P. A., and Wong J.. 2003. A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 22:2146–2155.
  • Inoue, H., Furukawa T., Giannakopoulos S., Zhou S., King D. S., and Tanese N.. 2002. Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors. J. Biol. Chem. 277:41674–41685.
  • Jacobson, R. H., Ladurner A. G., King D. S., and Tjian R.. 2000. Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425.
  • Kadam, S., and Emerson B. M.. 2003. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11:377–389.
  • Kal, A. J., Mahmoudi T., Zak N. B., and Verrijzer C. P.. 2000. The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev. 14:1058–1071.
  • Katsani, K. R., Mahmoudi T., and Verrijzer C. P.. 2003. Selective gene regulation by SWI/SNF-related chromatin remodeling factors. Curr. Top. Microbiol. Immunol. 274:113–141.
  • Klochendler-Yeivin, A., Muchardt C., and Yaniv M.. 2002. SWI/SNF chromatin remodeling and cancer. Curr. Opin. Genet. Dev. 12:73–79.
  • Kornberg, R. D., and Lorch Y.. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294.
  • Laity, J. H., Lee B. M., and Wright P. E.. 2001. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11:39–46.
  • Lemon, B., Inouye C., King D. S., and Tjian R.. 2001. Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414:924–928.
  • Leo, C., and Chen J. D.. 2000. The SRC family of nuclear receptor coactivators. Gene 245:1–11.
  • Mahmoudi, T., and Verrijzer C. P.. 2001. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene 20:3055–3066.
  • Marmorstein, R. 2001. Protein modules that manipulate histone tails for chromatin regulation. Nat. Rev. Mol. Cell Biol. 2:422–432.
  • Martens, J. A., and Winston F.. 2003. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr. Opin. Genet. Dev. 13:136–142.
  • Mohd-Sarip, A., Venturini F., Chalkley G. E., and Verrijzer C. P.. 2002. Pleiohomeotic can link Polycomb to DNA and mediate transcriptional repression. Mol. Cell. Biol. 22:7473–7483.
  • Narlikar, G. J., Fan H. Y., and Kingston R. E.. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487.
  • Neely, K. E., Hassan A. H., Brown C. E., Howe L., and Workman J. L.. 2002. Transcription activator interactions with multiple SWI/SNF subunits. Mol. Cell. Biol. 22:1615–1625.
  • Neely, K. E., Hassan A. H., Wallberg A. E., Steger D. J., Cairns B. R., Wright A. P., and Workman J. L.. 1999. Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol. Cell 4:649–655.
  • Neish, A. S., Anderson S. F., Schlegel B. P., Wei W., and Parvin J. D.. 1998. Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res. 26:847–853.
  • Nicolas, R. H., and Goodwin G. H.. 1996. Molecular cloning of polybromo, a nuclear protein containing multiple domains including five bromodomains, a truncated HMG-box, and two repeats of a novel domain. Gene 175:233–240.
  • Nie, Z., Xue Y., Yang D., Zhou S., Deroo B. J., Archer T. K., and Wang W.. 2000. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol. Cell. Biol. 20:8879–8888.
  • Olave, I. A., Reck-Peterson S. L., and Crabtree G. R.. 2002. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71:755–781.
  • Owen, D. J., Ornaghi P., Yang J. C., Lowe N., Evans P. R., Ballario P., Neuhaus D., Filetici P., and Travers A. A.. 2000. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 19:6141–6149.
  • Papoulas, O., Beek S. J., Moseley S. L., McCallum C. M., Sarte M., Shearn A., and Tamkun J. W.. 1998. The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 125:3955–3966.
  • Peterson, C. L., and Workman J. L.. 2000. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10:187–192.
  • Quinn, J., Fyrberg A. M., Ganster R. W., Schmidt M. C., and Peterson C. L.. 1996. DNA-binding properties of the yeast SWI/SNF complex. Nature 379:844–847.
  • Simon, J. A., and Tamkun J. W.. 2002. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr. Opin. Genet. Dev. 12:210–218.
  • Sudarsanam, P., and Winston F.. 2000. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet. 16:345–351.
  • Tamkun, J. W., Deuring R., Scott M. P., Kissinger M., Pattatucci A. M., Kaufman T. C., and Kennison J. A.. 1992. Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68:561–572.
  • Thomas, J. O., and Travers A. A.. 2001. HMG1 and 2, and related ′architectural' DNA-binding proteins. Trends Biochem. Sci. 26:167–174.
  • Treisman, J. E., Luk A., Rubin G. M., and Heberlein U.. 1997. Eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins. Genes Dev. 11:1949–1962.
  • Vazquez, M., Moore L., and Kennison J. A.. 1999. The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription. Development 126:733–742.
  • Vignali, M., Hassan A. H., Neely K. E., and Workman J. L.. 2000. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20:1899–1910.
  • Wang, W. 2003. The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions. Curr. Top. Microbiol. Immunol. 274:143–169.
  • Wang, W., Xue Y., Zhou S., Kuo A., Cairns B. R., and Crabtree G. R.. 1996. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10:2117–2130.
  • Wilsker, D., Patsialou A., Dallas P. B., and Moran E.. 2002. ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 13:95–106.
  • Wilson, C. J., Chao D. M., Imbalzano A. N., Schnitzler G. R., Kingston R. E., and Young R. A.. 1996. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84:235–244.
  • Xue, Y., Canman J. C., Lee C. S., Nie Z., Yang D., Moreno G. T., Young M. K., Salmon E. D., and Wang W.. 2000. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc. Natl. Acad. Sci. USA 97:13015–13020.
  • Yudkovsky, N., Logie C., Hahn S., and Peterson C. L.. 1999. Recruitment of the SWI/SNF chromatin remodeling complex transcriptional activators. Genes Dev. 13:2369–2374.
  • Zhang, Z., Hayashi M. K., Merkel O., Stillman B., and Xu R. M.. 2002. Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing. EMBO J. 21:4600–4611.
  • Zink, B., and Paro R.. 1989. In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature 337:468–471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.