25
Views
63
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Requirement of Rrm3 Helicase for Repair of Spontaneous DNA Lesions in Cells Lacking Srs2 or Sgs1 Helicase

&
Pages 3213-3226 | Received 21 Jul 2003, Accepted 21 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Aboussekhra, A., Chanet R., Zgaga Z., Cassier-Chauvat C., Heude M., and Fabre F.. 1989. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17:7211–7219.
  • Adams, M. D., McVey M., and Sekelsky J. J.. 2003. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299:265–267.
  • Bastin-Shanower, S. A., Fricke W. M., Mullen J. R., and Brill S. J.. 2003. The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol. Cell. Biol. 23:3487–3496.
  • Bennett, R. J., Sharp J. A., and Wang J. C.. 1998. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273:9644–9650.
  • Boulton, S. J., and Jackson S. P.. 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:1819–1828.
  • Brosh, R. M., Jr., and Bohr V. A.. 2002. Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp. Gerontol 37:491–506.
  • Chester, N., Kuo F., Kozak C., O'Hara C. D., and Leder P.. 1998. Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom's syndrome gene. Genes Dev. 12:3382–3393.
  • Ciccia, A., Constantinou A., and West S. C.. 2003. Identification and characterization of the human Mus81/Eme1 endonuclease. J. Biol. Chem. 278:25172–25178.
  • Cobb, J. A., Bjergbaek L., and Gasser S. M.. 2002. RecQ helicases: at the heart of genetic stability. FEBS Lett. 529:43–48.
  • Connelly, J. C., and Leach D. R.. 2002. Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex. Trends Biochem. Sci. 27:410–418.
  • Constantinou, A., Tarsounas M., Karow J. K., Brosh R. M., Bohr V. A., Hickson I. D., and West S. C.. 2000. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1:80–84.
  • Cox, M. M. 2002. The nonmutagenic repair of broken replication forks via recombination. Mutat. Res. 510:107–120.
  • D'Amours, D., and Jackson S. P.. 2002. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3:317–327.
  • D'Amours, D., and Jackson S. P.. 2001. The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15:2238–2249.
  • Dillingham, M. S., Spies M., and Kowalczykowski S. C.. 2003. RecBCD enzyme is a bipolar DNA helicase. Nature 423:893–897.
  • Epstein, C. J., and Motulsky A. G.. 1996. Werner syndrome: entering the helicase era. Bioessays 18:1025–1027.
  • Fabre, F., Chan A., Heyer W. D., and Gangloff S.. 2002. Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. USA 99:16887–16892.
  • Frei, C., and Gasser S. M.. 2000. RecQ-like helicases: the DNA replication checkpoint connection. J. Cell Sci. 113:2641–2646.
  • Frei, C., and Gasser S. M.. 2000. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14:81–96.
  • Gangloff, S., McDonald J. P., Bendixen C., Arthur L., and Rothstein R.. 1994. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14:8391–8398.
  • Gangloff, S., Soustelle C., and Fabre F.. 2000. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 25:192–194.
  • German, J. 1995. Bloom's syndrome. Dermatol. Clin. 13:7–18.
  • Grenon, M., Gilbert C., and Lowndes N. F.. 2001. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3:844–847.
  • Haber, J. E. 1999. DNA recombination: the replication connection. Trends Biochem. Sci. 24:271–275.
  • Haber, J. E. 1998. The many interfaces of Mre11. Cell 95:583–586.
  • Haber, J. E., and Heyer W. D.. 2001. The fuss about Mus81. Cell 107:551–554.
  • Heyer, W. D., Rao M. R., Erdile L. F., Kelly T. J., and Kolodner R. D.. 1990. An essential Saccharomyces cerevisiae single-stranded DNA binding protein is homologous to the large subunit of human RP-A. EMBO J. 9:2321–2329.
  • Hickson, I. D., Davies S. L., Li J. L., Levitt N. C., Mohaghegh P., North P. S., and Wu L.. 2001. Role of the Bloom's syndrome helicase in maintenance of genome stability. Biochem. Soc. Trans. 29:201–204.
  • Huang, M. E., de Calignon A., Nicolas A., and Galibert F.. 2000. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase δ, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr. Genet. 38:178–187.
  • Interthal, H., and Heyer W. D.. 2000. MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol. Gen. Genet. 263:812–827.
  • Ivessa, A. S., Lenzmeier B. A., Bessler J. B., Goudsouzian L. K., Schnakenberg S. L., and Zakian V. A.. 2003. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication fork progression past non-histone protein-DNA complexes. Mol. Cell 12:1525–1536.
  • Ivessa, A. S., Zhou J. Q., Schulz V. P., Monson E. K., and Zakian V. A.. 2002. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 16:1383–1396.
  • Ivessa, A. S., Zhou J. Q., and Zakian V. A.. 2000. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100:479–489.
  • Kaliraman, V., Mullen J. R., Fricke W. M., Bastin-Shanower S. A., and Brill S. J.. 2001. Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev. 15:2730–2740.
  • Karow, J. K., Constantinou A., Li J. L., West S. C., and Hickson I. D.. 2000. The Bloom's syndrome gene product promotes branch migration of Holliday junctions. Proc. Natl. Acad. Sci. USA 97:6504–6508.
  • Keil, R. L., and McWilliams A. D.. 1993. A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics 135:711–718.
  • Klein, H. L. 2001. Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Δ with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157:557–565.
  • Klein, H. L., and Kreuzer K. N.. 2002. Replication, recombination, and repair: going for the gold. Mol. Cell 9:471–480.
  • Krejci, L., Van Komen S., Li Y., Villemain J., Reddy M. S., Klein H., Ellenberger T., and Sung P.. 2003. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309.
  • Kusano, K., Berres M. E., and Engels W. R.. 1999. Evolution of the RECQ family of helicases: a Drosophila homolog, Dmblm, is similar to the human bloom syndrome gene. Genetics 151:1027–1039.
  • Lee, S. K., Johnson R. E., Yu S. L., Prakash L., and Prakash S.. 1999. Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286:2339–2342.
  • Liberi, G., Chiolo I., Pellicioli A., Lopes M., Plevani P., Muzi-Falconi M., and Foiani M.. 2000. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J. 19:5027–5038.
  • Lopes, M., Cotta-Ramusino C., Liberi G., and Foiani M.. 2003. Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol. Cell 12:1499–1510.
  • Luo, G., Santoro I. M., McDaniel L. D., Nishijima I., Mills M., Youssoufian H., Vogel H., Schultz R. A., and Bradley A.. 2000. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat. Genet. 26:424–429.
  • Mirzoeva, O. K., and Petrini J. H.. 2001. DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol. Cell. Biol. 21:281–288.
  • Miyagawa, K. 1998. Genetic instability and cancer. Int. J. Hematol. 67:3–14.
  • Modesti, M., and Kanaar R.. 2001. Homologous recombination: from model organisms to human disease. Genome Biol. 2:1014.1–1014.5.
  • Mullen, J. R., Kaliraman V., Ibrahim S. S., and Brill S. J.. 2001. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157:103–118.
  • Myung, K., Datta A., Chen C., and Kolodner R. D.. 2001. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homologous recombination. Nat. Genet. 27:113–116.
  • Ohhata, T., Araki R., Fukumura R., Kuroiwa A., Matsuda Y., and Abe M.. 2001. Cloning, genomic structure and chromosomal localization of the gene encoding mouse DNA helicase RECQL5β. Gene 280:59–66.
  • Ooi, S. L., Shoemaker D. D., and Boeke J. D.. 2003. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat. Genet. 35:277–286.
  • Rong, L., and Klein H. L.. 1993. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268:1252–1259.
  • Rong, L., Palladino F., Aguilera A., and Klein H. L.. 1991. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127:75–85.
  • Rothstein, R., Michel B., and Gangloff S.. 2000. Replication fork pausing and recombination or “gimme a break. ” Genes Dev. 14:1–10.
  • Schiestl, R. H., Prakash S., and Prakash L.. 1990. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124:817–831.
  • Schild, D. 1995. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140:115–127.
  • Schmidt, K. H., Derry K. L., and Kolodner R. D.. 2002. Saccharomyces cerevisiae RRM3, a 5′ to 3′ DNA helicase, physically interacts with proliferating cell nuclear antigen. J. Biol. Chem. 277:45331–45337.
  • Scholes, D. T., Banerjee M., Bowen B., and Curcio M. J.. 2001. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 159:1449–1465.
  • Seigneur, M., Bidnenko V., Ehrlich S. D., and Michel B.. 1998. RuvAB acts at arrested replication forks. Cell 95:419–430.
  • Shor, E., Gangloff S., Wagner M., Weinstein J., Price G., and Rothstein R.. 2002. Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae. Genetics 162:647–662.
  • Smith, G. R. 2001. Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu. Rev. Genet. 35:243–274.
  • Szostak, J. W., Orr-Weaver T. L., Rothstein R. J., and Stahl F. W.. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Taylor, A. F., and Smith G. R.. 2003. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423:889–893.
  • Tong, A. H., Evangelista M., Parsons A. B., Xu H., Bader G. D., Page N., Robinson M., Raghibizadeh S., Hogue C. W., Bussey H., Andrews B., Tyers M., and Boone C.. 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368.
  • Torres, J. Z., Schnakenberg S. L., and Zakian V. A.. 2004. The Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24:3198–3212.
  • Tsukamoto, Y., Taggart A. K., and Zakian V. A.. 2001. The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol. 11:1328–1335.
  • Usui, T., Ogawa H., and Petrini J. H.. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7:1255–1266.
  • Veaute, X., Jeusset J., Soustelle C., Kowalczykowski S. C., Le Cam E., and Fabre F.. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312.
  • Vennos, E. M., and James W. D.. 1995. Rothmund-Thomson syndrome. Dermatol. Clin. 13:143–150.
  • Watt, P. M., Hickson I. D., Borts R. H., and Louis E. J.. 1996. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144:935–945.
  • Watt, P. M., Louis E. J., Borts R. H., and Hickson I. D.. 1995. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81:253–260.
  • West, S. C. 1995. Formation, translocation and resolution of Holliday junctions during homologous genetic recombination. Philos. Trans. R. Soc. London B 347:21–25.
  • Whitby, M. C., Osman F., and Dixon J.. 2003. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem. 278:6928–6935.
  • Wu, L., and Hickson I. D.. 2002. RecQ helicases and cellular responses to DNA damage. Mutat. Res. 509:35–47.
  • Yamagata, K., Kato J., Shimamoto A., Goto M., Furuichi Y., and Ikeda H.. 1998. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. USA 95:8733–8738.
  • Zou, H., and Rothstein R.. 1997. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.