33
Views
104
CrossRef citations to date
0
Altmetric
Gene Expression

Evidence of a New Role for the High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway in Yeast: Regulating Adaptation to Citric Acid Stress

, , &
Pages 3307-3323 | Received 15 Oct 2003, Accepted 26 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Albertyn, J., Hohmann S., Thevelein J. M., and Prior B. A.. 1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14:4135–4144.
  • Anraku, Y., Hirata R., Wada Y., and Ohya Y.. 1992. Molecular genetics of the yeast vacuolar H+-ATPase. J. Exp. Biol. 172:67–81.
  • Bammert, G. F., and Fostel J. M.. 2000. Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob. Agents Chemother. 44:1255–1265.
  • Bauer, B. E., Rossington D., Mollapour M., Mamnun Y., Kuchler K., and Piper P. W.. 2003. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur. J. Biochem. 270:3189–3195.
  • Boucherie, H., Dujardin G., Kermorgant M., Monribot C., and Slonimski P.. 1995. Two-dimensional protein map of Saccharomyces cerevisiae: construction of a gene-protein index. Yeast 11:601–613.
  • Causton, H. C., Ren B., Koh S. S., Harbison C. T., Kanin E., Jennings E. G., Lee T. I., True H. L., Lander E. S., and Young R. A.. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12:323–337.
  • de Nobel, H., Lawrie L., Brul S., Klis F., Davis M., Alloush H., and Coote P.. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18:1413–1428.
  • Eilam, Y., Lavi H., and Grossowicz N.. 1985. Mechanism of stimulation of Ca2+ uptake by miconazole and ethidium bromide in yeasts: role of vacuoles in Ca2+ detoxification. Microbios 44:51–66.
  • Gasch, A. P., and Werner-Washburne M.. 2002. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2:181–192.
  • Gietz, R. D., Schiestl R. H., Willems A. R., and Woods R. A.. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360.
  • Gould, G. W. 1989. Mechanisms of activation of food preservation procedures. Elsevier Sciences Publishers Ltd., London, England.
  • Graham, A. F., and Lund B. M.. 1986. The effect of citric acid on growth of proteolytic strains of Clostridium botulinum. J. Appl. Bacteriol. 61:39–49.
  • Gustin, M. C., Albertyn J., Alexander M., and Davenport K.. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62:1264–1300.
  • Gygi, S. P., Rochon Y., Franza B., and Aebersold R.. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19:1720–1730.
  • Hatcher, W. S., Parish M. E., Weihe J. L., Splittstoesser D. F., and Woodward B. B.. 2000. Fruit beverages, p. 565–568. In Downes F. P. and Ito K. (ed.), Methods for microbial examination of food. American Public Health Association, Washington, D.C.
  • Herruer, M. H., Mager W. H., Raue H. A., Vreken P., Wilms E., and Planta R. J.. 1988. Mild temperature shock affects transcription of yeast ribosomal protein genes as well as the stability of their mRNAs. Nucleic Acids Res. 16:7917–7929.
  • Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66:300–372.
  • Jacoby, T., Flanagan H., Faykin A., Seto A. G., Mattison C., and Ota I.. 1997. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J. Biol. Chem. 272:17749–17755.
  • Kane, P. M., Kuehn M. C., Howald-Stevenson I., and Stevens T. H.. 1992. Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H+-ATPase. J. Biol. Chem. 267:447–454.
  • Kapteyn, J. C., ter Riet B., Vink E., Blad S., De Nobel H., Van Den Ende H., and Klis F. M.. 2001. Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol. Microbiol. 39:469–479.
  • Klionsky, D. J., Herman P. K., and Emr S. D.. 1990. The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev. 54:266–292.
  • Kren, A., Mamnun Y. M., Bauer B. E., Schuller C., Wolfger H., Hatzixanthis K., Mollapour M., Gregori C., Piper P., and Kuchler K.. 2003. War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol. Cell. Biol. 23:1775–1785.
  • Martinez-Pastor, M. T., Marchler G., Schuller C., Marchler-Bauer A., Ruis H., and Estruch F.. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15:2227–2235.
  • Matsumoto, T. K., Ellsmore A. J., Cessna S. G., Low P. S., Pardo J. M., Bressan R. A., and Hasegawa P. M.. 2002. An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 277:33075–33080.
  • Ohsumi, Y., and Anraku Y.. 1983. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 258:5614–5617.
  • Piper, P., Mahe Y., Thompson S., Pandjaitan R., Holyoak C., Egner R., Muhlbauer M., Coote P., and Kuchler K.. 1998. The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J. 17:4257–4265.
  • Posas, F., Chambers J. R., Heyman J. A., Hoeffler J. P., de Nadal E., and Arino J.. 2000. The transcriptional response of yeast to saline stress. J. Biol. Chem. 275:17249–17255.
  • Proft, M., Pascual-Ahuir A., de Nadal E., Arino J., Serrano R., and Posas F.. 2001. Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J. 20:1123–1133.
  • Qi, S.-Y., Moir A., and O'Connor C. D.. 1996. Proteome of Salmonella typhimurium SL1344: identification of novel abundant cell envelope proteins and assignment to a two-dimensional reference map. J. Bacteriol. 178:5032–5038.
  • Rep, M., Albertyn J., Thevelein J. M., Prior B. A., and Hohmann S.. 1999. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145:715–727.
  • Rep, M., Krantz M., Thevelein J. M., and Hohmann S.. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275:8290–8300.
  • Salmond, C. V., Kroll R. G., and Booth I. R.. 1984. The effect of food preservatives on pH homeostasis in Escherichia coli. J. Gen. Microbiol. 130:2845–2850.
  • Schuller, C., Brewster J. L., Alexander M. R., Gustin M. C., and Ruis H.. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13:4382–4389.
  • Sherwood, P. W., and Carlson H.. 1999. Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p. Proc. Natl. Acad. Sci. USA 96:7415–7420.
  • Sikorski, R. S., and Hieter P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Singh, K. K. 2000. The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic. Biol. Med. 29:1043–1050.
  • Steinmetz, L. M., Scharfe C., Deutschbauer A. M., Mokranjac D., Herman Z. S., Jones T., Chu A. M., Giaever G., Prokisch H., Oefner P. J., and Davis R. W.. 2002. Systematic screen for human disease genes in yeast. Nat. Genet. 31:400–404.
  • Tamas, M. J., Rep M., Thevelein J. M., and Hohmann S.. 2000. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett. 472:159–165.
  • Tenreiro, S., Rosa P. C., Viegas C. A., and Sa-Correia I.. 2000. Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16:1469–1481.
  • Viegas, C. A., and Sa-Correia I.. 1991. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J. Gen. Microbiol. 137:645–651.
  • Warmka, J., Hanneman J., Lee J., Amin D., and Ota I.. 2001. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol. Cell. Biol. 21:51–60.
  • Wilson, M., DeRisi J., Kristensen H.-H., Imboden P., Rane S., Brown P. O., and Schoolnik G. K.. 1999. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96:12833–12838.
  • Winkler, A., Arkind C., Mattison C. P., Burkholder A., Knoche K., and Ota I.. 2002. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot. Cell 1:163–173.
  • Wojda, I., Alonso-Monge R., Bebelman J. P., Mager W. H., and Siderius M.. 2003. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149:1193–1204.
  • Xue, L., and Lucocq J. M.. 1997. Low extracellular pH induces activation of ERK 2, JNK, and p38 in A431 and Swiss 3T3 cells. Biochem. Biophys. Res. Commun. 241:236–242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.