17
Views
93
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Homeobox Protein Msx2 Acts as a Molecular Defense Mechanism for Preventing Ossification in Ligament Fibroblasts

, , , , , , & show all
Pages 3460-3472 | Received 24 Oct 2003, Accepted 27 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Aronson, B. D., Fisher A. L., Blechman K., Caudy M., and Gergen J. P.. 1997. Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell. Biol. 17:5581–5587.
  • Barnes, G. L., Javed A., Walker S. M., Kamel M. H., Herbert K. E., Hassan M. Q., Bellhcene A., Wijnen A. J., Young M. F., Lian J. B., Stein G. S., and Gerstenfeld L. C.. 2003. Osteoblast-related transcription facter Runx2(Cbfa1/AML-3) and msx2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 63:2631–2636.
  • Cheng, S.-L., Chao J.-S., Karlton-Kachigian N., Loewy A. P., and Towler D. A.. 2003. Msx2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J. Biol. Chem. 278:45969–45977.
  • Dodig, M., Tadic T., Kronenberg M. S., Dacic S., Liu Y. H., Maxson R., Rowe D. W., and Lichtler A. C.. 1999. Ectopic Msx2 overexpression inhibits and Msx2 antisense stimulates calvarial osteoblast differentiation. Dev. Biol. 209:298–307.
  • Ducy, P., and Karsenty G.. 1995. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol. Cell. Biol. 15:1858–1869.
  • Ducy, P., Zhang R., Geoffroy V., Ridall A. L., and Karsenty G.. 1997. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754.
  • Ducy, P. 2000. Cbfa1: a molecular switch in osteoblast biology. Dev. Dynam. 219:461–471.
  • Gotoh, M., Notoya K., Ienaga Y., Kawase M., and Makino H.. 2002. Enhancement of osteogenesis in vitro by a novel osteoblast differentiation-promoting compound, TAK-778, partly through the expression of Msx2. Eur. J. Pharmacol. 451:19–25.
  • Hamanishi, C., Tan A., Yamane T., Tomihara M., Fukuda K., and Tanaka S.. 1995. Ossification of the posterior longitudinal ligament. Autosomal recessive trait. Spine 20:205–207.
  • Hanai, J., Chen L. F., Kanno T., Ohtani-Fujita N., Kim W. Y., Guo W. H., Imamura T., Ishidou Y., Fukuchi M., Shi M. J., Stavnezer J., Kawabata M., Miyazono K., and Ito Y.. 1999. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274:31577–31582.
  • Hu, G., Lee H., Pricel S. M., Shenl M. M., and Abate-Shen C.. 2001. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128:2373–2384.
  • Jabs, E. W., Muller U., Li X., Ma L., Luo W., Haworth I. S., Klisak I., Sparkes R., Warman M. L., and Mulliken J. B.. 1993. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75:443–450.
  • Javed, A., Guo B., Hiebert S., Choi J.-Y., Green J., Zhao S.-C., Osborne M. A., Stifani S., Stein J. L., Lian J. B., van Wijnen A. J., and Stein G. S.. 2000. Groucho/TLE/R-Esp proteins associate with the nuclear matrix and repress RUNX (CBFα/AML/PEBP2α) dependent activation of tissue-specific gene transcription. J. Cell Sci. 113:2221–2231.
  • Kim, S., Koga T., Isobe M., Kern B. F., Yokochi T., Chin Y. F., Karsenty G., Taniguchi T., and Takayanagi H.. 2003. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 17:1979–1991.
  • Koga, H., Sakou T., Taketomi E., Hayashi K., Numasawa T., Harata S., Yone K., Matsunaga S., Otterud B., Inoue I., and Leppert M.. 1998. Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 62:1460–1467.
  • Komori, T. 2002. Runx2, a multifunctional transcription factor in skeletal development. J. Cell Biochem. 87:1–8.
  • Komori, T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimizu Y., Bronson R. T., Gao Y. H., Inada M., Sato M., Okamoto R., Kitamura Y., Yoshiki S., and Kishimoto T.. 1997. Targeted disruption of Cbfa1 results in complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764.
  • Koshizuka, Y., Kawaguchi H., Ogata N., Ikeda T., Mabuchi A., Seichi A., Nakanura Y., Nakanura K., and Ikegawa S.. 2002. Nucleotide pyrophosphatase gene polymorphism associated with ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Res. 17:138–144.
  • Lee, K.-S., Kim H. J., Li Q. L., Chi X. Z., Ueta C., Komori T., Wozney J. M., Kim E. G., Choi J. Y., Ryoo H. M., and Bae S. C.. 2000. Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell. Biol. 20:8783–8792.
  • Levanon, D., Goldstein R. E., Bernstein Y., Tang H., Goldenberg D., Stifani S., Paroush Z., and Groner Y.. 1998. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl. Acad. Sci. USA 95:11590–11595.
  • Liu, Y. H., Kundu R., Wu L., Luo W., Ignelzi M. A., Jr., Snead M. L., and Maxson R. E., Jr. 1995. Premature suture closure and ectopic cranial bone in mice expressing Msx2 transgenes in the developing skull. Proc. Natl. Acad. Sci. USA 92:6137–6141.
  • Liu, Y. H., Tang Z., Kundu R. K., Wu L., Luo W., Zhu D., Sangiorgi F., Snead M. L., and Maxson R. E.. 1999. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev. Biol. 205:260–274.
  • Ma, I., Golden S., Wu L., and Maxson R.. 1996. The molecular basis of Boston-type craniosynoptosis: the Pro148His mutation in the N-terminal arm of the Msx2 preferences. Hum. Mol. Genet. 9:1915–1920.
  • Matsunaga, S., and Sakou T.. 1997. Epidemiology of ossification of the posterior longitudinal ligament, p. 3–17. In Yonenobu K., Sakou T., and Ono K. (ed.), Ossification of the posterior longitudinal ligament. Springer-Verlag Press, Tokyo, Japan.
  • Matsunaga, S., Yamaguchi M., Hayashi K., and Sakou T.. 1999. Genetic analysis of ossification of the posterior longitudinal ligament. Spine 24:937–938.
  • McLarren, K. W., Lo R., Grvabec D., Thirunavukkarasu K., Karsenty G., and Stifani S.. 2000. The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J. Biol. Chem. 275:530–538.
  • Mehra-Chaudhary, R., H. Matsui, and R. Raghow. 2001. Msx3 protein recruits histone deacetylase to downregulate the Msx1 promoter. Biochem. J. 353:13–22.
  • Nakashima, K., Zhou X., Kunkel G., Zhang Z., Deng J. M., Behringer R. R., and de Crombrugghe B.. 2002. The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29.
  • Newberry, E. P., Boudreaux J. M., and Towler D. A.. 1997. Stimulus-selective inhibition of rat osteocalcin promoter induction and protein-DNA interactions by the homeodomain repressor Msx2. J. Biol. Chem. 272:29607–29613.
  • Newberry, E. P., Latifi T., Battaile J. T., and Towler D. A.. 1997. Structure-function analysis of Msx2-mediated transcriptional suppression. Biochemistry 36:10451–10462.
  • Newberry, E. P., Latifi T., and Rowler D. A.. 1999. The RRM domain of MINT, a novel Msx2 binding protein, recognizes and regulates the rat osteocalcin promoter. Biochemistry 38:10678–10690.
  • Pardali, E., Xie X. Q., Tsapogas P., Itoh S., Arvanitidis K., Heldin C. H., ten Dijke P., Grundstrom T., and Sideras P.. 2000. Smad and AML proteins synergistically confer transforming growth factor β1 responsiveness to human germ-line IgA genes. J. Biol. Chem. 275:3552–3560.
  • Resnick, D., Guerra J., Jr., Robinson C. A., and Vint V. C.. 1978. Association of diffuse idiopathic skeletal hyperostosis (DISH) and ossification of the posterior longitudinal ligament. Am. J. Roentgenol. 131:1049–1053.
  • Saito, Y., Yoshizawa T., Takizawa F., Ikegame M., Ishibashi O., Okuda K., Hara K., Ishibashi K., Obinata M., and Kawashima H.. 2002. A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2. J. Cell Sci. 115:4191–4200.
  • Sakou, T., Taketomi E., Matsunaga S., Yamaguchi M., Sonoda S., and Yashiki S.. 1991. Genetic study of ossification of the posterior longitudinal ligament in the cervical spine with human leukocyte antigen haplotype. Spine 16:1249–1252.
  • Satokata, I., Ma L., Ohshima H., Bei M., Woo I., Nishizawa K., Maeda T., Takano Y., Uchiyama M., Heaney S., Peters H., Tang Z., Maxson R., and Maas R.. 2000. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat. Genet. 24:391–395.
  • Shi, Y., Downes M., Xie W., Kao H.-Y., Ordentlich P., Tsai C.-C., Hon M., and Evans R. M.. 2001. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev. 15:1140–1151.
  • Shirakabe, K., Terasawa K., Miyama K., Shibuya H., and Nishida E.. 2001. Regulation of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells 6:851–856.
  • Stifani, S., Blanumueller C. M., Redhead N. J., Hill R. E., and Artavanis-Tsakonas S.. 1992. Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat. Genet. 2:119–127.
  • Terayama, K. 1989. Genetic studies on ossification of the posterior longitudinal ligament of the spine. Spine 14:1184–1191.
  • Thirunavukkarasu, K., Mahajan M., McLarren K. W., Stifani S., and Karsenty G.. 1998. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with CBFβ. Mol. Cell. Biol. 18:4197–4208.
  • Towler, D. A., Rutledge S. J., and Rodan G. A.. 1994. Msx-2/Hox8.1: a transcriptional regulator of the rat osteocalcin promoter. Mol. Endocrinol. 8:1484–1493.
  • Wikie, A. O., Tang Z., Elanko N., Walsh S., Twigg S. R., Hurst J. A., Wall S. A., Chrzanowska K. H., and Maxson R. E., Jr. 2000. Functional haploinsufficiency of the human homeobox gene Msx2 causes defects in skull ossification. Nat. Genet. 24:387–390.
  • Willis, D. M., Lowey A. P., Karlton-Kachigian N., Shao J.-S., Ornitz D. M., and Towler D. A.. 2002. Regulation of osteocalcin gene expression by a novel Ku antigen transcription factor complex. J. Biol. Chem. 277:37280–37291.
  • Winograd, J., Reilly M. P., Roe R., Lutz J., Laughner E., Xu X., Hu L., Asakura T., van der Kolk C., Strandberg J. D., and Semenza G. L.. 1997. Perinatal lethality and multiple craniofacial malformations in MSX2 transgenic mice. Hum. Mol. Genet. 6:369–379.
  • Zeng, C., McNeil S., Pockwinse S., Nickerson J., Shopland L., Lawrence J. B., Penman S., Hiebert S., Lian J. B., van Wijnen A. J., Stein J. L., and Stein G. S.. 1998. Intranuclear targeting of AML/CBFα regulatory factors to nuclear matrix-associated transcriptional domains. Proc. Natl. Acad. Sci. USA 95:1585–1589.
  • Zhang, H., Hu G., Wang H., Sciavolino P., Iler N., Shen M. M., and Abate-Shen C.. 1997. Heterodimerization of Msx2 and Dlx homeoproteins results in functional antagonism. Mol. Cell. Biol. 17:2920–2932.
  • Zhang, Y.-W., Yasui N., Ito K., Huang G., Fujii M., Hanai J., Nogami H., Ochi T., Miyazono K., and Ito Y.. 2000. A RUNX2/PEBP2αA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc. Natl. Acad. Sci. USA 97:10549–10554.
  • Zhou, Y. L., Lei Y., and Snead M. L.. 2000. Functional antagonism between Msx2 and CCAAT/Enhancer-binding protein α in regulating the mouse amelogenin gene expression is mediated by protein-protein interaction. J. Biol. Chem. 275:29066–29075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.