88
Views
119
CrossRef citations to date
0
Altmetric
Cell Growth and Development

How Many Mutant p53 Molecules Are Needed To Inactivate a Tetramer?

, , &
Pages 3536-3551 | Received 07 Dec 2003, Accepted 23 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Aurelio, O. N., Kong X. T., Gupta S., and Stanbridge E. J.. 2000. p53 mutants have selective dominant-negative effects on apoptosis but not growth arrest in human cancer cell lines. Mol. Cell. Biol. 20:770–778.
  • Ausubel, F., Brent R., Kingston R., Moore D., Seidman J., Smith J., and Struhl K.. 1991. Current protocols in molecular biology. John Wiley & Sons, New York, N.Y.
  • Bodner, S. M., Minna J. D., Jensen S. M., D'Amico D., Carbone D., Mitsudomi T., Fedorko J., Buchhagen D. L., Nau M. M., Gazdar A. F., et al. 1992. Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7:743–749.
  • Cho, Y., Gorina S., Jeffrey P. D., and Pavletich N. P.. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355.
  • Chow, J. P. H., W. I. Siu, T. K. Fung, W. M. Chan, A. Lau, T. Arooz, C.-P. Ng, K. Yamashita, and R. Y. C. Poon. 2003. DNA damage during the spindle-assembly checkpoint degrades CDC25A, inhibits cyclin-CDC2 complexes, and reverses cells to interphase. Mol. Biol. Cell 14:3189–4002.
  • Davison, T. S., Vagner C., Kaghad M., Ayed A., Caput D., and Arrowsmith C. H.. 1999. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 274:18709–18714.
  • Denissenko, M. F., Pao A., Tang M., and Pfeifer G. P.. 1996. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432.
  • de Vries, A., E. R. Flores, B. Miranda, H. M. Hsieh, C. T. van Oostrom, J. Sage, and T. Jacks. 2002. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc. Natl. Acad. Sci. USA 99:2948–2953.
  • Eliyahu, D., Goldfinger N., Pinhasi-Kimhi O., Shaulsky G., Skurnik Y., Arai N., Rotter V., and Oren M.. 1988. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3:313–321.
  • Finlay, C. A., Hinds P. W., and Levine A. J.. 1989. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093.
  • Forrester, K., Lupold S. E., Ott V. L., Chay C. H., Band V., Wang X. W., and Harris C. C.. 1995. Effects of p53 mutants on wild-type p53-mediated transactivation are cell type dependent. Oncogene 10:2103–2111.
  • Frebourg, T., Sadelain M., Ng Y. S., Kassel J., and Friend S. H.. 1994. Equal transcription of wild-type and mutant p53 using bicistronic vectors results in the wild-type phenotype. Cancer Res. 54:878–881.
  • Fujita, M., Kiyono T., Hayashi Y., and Ishibashi M.. 1997. In vivo interaction of human MCM heterohexameric complexes with chromatin. Possible involvement of ATP. J. Biol. Chem. 272:10928–10935.
  • Fung, T. K., Siu W. Y., Yam C. H., Lau A., and Poon R. Y. C.. 2002. Cyclin F is degraded during G2-M by mechanisms fundamentally different from other cyclins. J. Biol. Chem. 277:35140–35149.
  • Gu, J., Kawai H., Wiederschain D., and Yuan Z. M.. 2001. Mechanism of functional inactivation of a Li-Fraumeni syndrome p53 that has a mutation outside of the DNA-binding domain. Cancer Res. 61:1741–1746.
  • Hachiya, M., Chumakov A., Miller C. W., Akashi M., Said J., and Koeffler H. P.. 1994. Mutant p53 proteins behave in a dominant, negative fashion in vivo. Anticancer Res. 14:1853–1859.
  • Harris, C. C. 1993. p53: at the crossroads of molecular carcinogenesis and risk assessment. Science 262:1980–1981.
  • Hollstein, M., Sidransky D., Vogelstein B., and Harris C. C.. 1991. p53 mutations in human cancers. Science 253:49–53.
  • Hsu, I. C., Metcalf R. A., Sun T., Welsh J. A., Wang N. J., and Harris C. C.. 1991. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350:427–428.
  • Irwin, M. S., and Kaelin W. G.. 2001. p53 family update: p73 and p63 develop their own identities. Cell Growth Differ. 12:337–349.
  • Ishimoto, O., Kawahara C., Enjo K., Obinata M., Nukiwa T., and Ikawa S.. 2002. Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res. 62:636–641.
  • Jeffrey, P. D., Gorina S., and Pavletich N. P.. 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–1502.
  • Kern, S. E., Pietenpol J. A., Thiagalingam S., Seymour A., Kinzler K. W., and Vogelstein B.. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–830.
  • Leung, K. M., Po L. S., Tsang F. C., Siu W. Y., Lau A., Ho H. T., and Poon R. Y. C.. 2002. The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Res. 62:4890–4893.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • McLure, K. G., and Lee P. W.. 1998. How p53 binds DNA as a tetramer. EMBO J. 17:3342–3350.
  • Milner, J., and Medcalf E. A.. 1991. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65:765–774.
  • Nakagawa, T., Takahashi M., Ozaki T., Watanabe Ki K., Todo S., Mizuguchi H., Hayakawa T., and Nakagawara A.. 2002. Autoinhibitory regulation of p73 by ΔNp73 to modulate cell survival and death through a p73-specific target element within the ΔNp73 promoter. Mol. Cell. Biol. 22:2575–2585.
  • Nicholls, C. D., McLure K. G., Shields M. A., and Lee P. W.. 2002. Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J. Biol. Chem. 277:12937–12945.
  • Ongkeko, W. M., Wang X. Q., Siu W. Y., Lau A. W. S., Yamashita K., Harris A. L., Cox L. S., and Poon R. Y. C.. 1999. MDM2 and MDMX bind and stabilize the tumor suppressor p53-related protein p73. Curr. Biol. 9:829–832.
  • Poon, R. Y. C., H. Toyoshima, and T. Hunter. 1995. Redistribution of the CDK inhibitor p27 between different cyclin. CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol. Biol. Cell 6:1197–1213.
  • Pozniak, C. D., Radinovic S., Yang A., McKeon F., Kaplan D. R., and Miller F. D.. 2000. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289:304–306.
  • Rovinski, B., and Benchimol S.. 1988. Immortalization of rat embryo fibroblasts by the cellular p53 oncogene. Oncogene 2:445–452.
  • Sayan, A. E., Sayan B. S., Findikli N., and Ozturk M.. 2001. Acquired expression of transcriptionally active p73 in hepatocellular carcinoma cells. Oncogene 20:5111–5117.
  • Srivastava, S., Wang S., Tong Y. A., Pirollo K., and Chang E. H.. 1993. Several mutant p53 proteins detected in cancer-prone families with Li-Fraumeni syndrome exhibit transdominant effects on the biochemical properties of the wild-type p53. Oncogene 8:2449–2456.
  • Stiewe, T., Theseling C. C., and Putzer B. M.. 2002. Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J. Biol. Chem. 277:14177–14185.
  • Varley, J. M. 2003. Germline TP53 mutations and Li-Fraumeni syndrome. Hum. Mutat. 21:313–320.
  • Vikhanskaya, F., D'Incalci M., and Broggini M.. 2000. p73 competes with p53 and attenuates its response in a human ovarian cancer cell line. Nucleic Acids Res. 28:513–519.
  • Vogelstein, B., and Kinzler K. W.. 1992. p53 function and dysfunction. Cell 70:523–526.
  • Vogelstein, B., and Kinzler K. W.. 1994. Tumour-suppressor genes. X-rays strike p53 again. Nature 370:174–175.
  • Vogelstein, B., Lane D., and Levine A. J.. 2000. Surfing the p53 network. Nature 408:307–310.
  • Wang, X., Arooz T., Siu W. Y., Chiu C. H., Lau A., Yamashita K., and Poon R. Y. C.. 2001. MDM2 and MDMX can interact differently with ARF and members of the p53 family. FEBS Lett. 490:202–208.
  • Wang, X. Q., Ongkeko W. M., Lau A. W., Leung K. M., and Poon R. Y. C.. 2001. A possible role of p73 on the modulation of p53 level through MDM2. Cancer Res. 61:1598–1603.
  • Wang, Y., Schwedes J. F., Parks D., Mann K., and Tegtmeyer P.. 1995. Interaction of p53 with its consensus DNA-binding site. Mol. Cell. Biol. 15:2157–2165.
  • Yam, C. H., Ng R. W., Siu W. Y., Lau A. W., and Poon R. Y. C.. 1999. Regulation of cyclin A-Cdk2 by SCF component Skp1 and F-box protein Skp2. Mol. Cell. Biol. 19:635–645.
  • Yam, C. H., Siu W. Y., Arooz T., Chiu C. H., Lau A., Wang X. Q., and Poon R. Y. C.. 1999. MDM2 and MDMX inhibit the transcriptional activity of ectopically expressed SMAD proteins. Cancer Res. 59:5075–5078.
  • Yam, C. H., Siu W. Y., Lau A., and Poon R. Y. C.. 2000. Degradation of cyclin A does not require its phosphorylation by CDC2 and cyclin-dependent kinase 2. J. Biol. Chem. 275:3158–3167.
  • Yang, A., Kaghad M., Caput D., and McKeon F.. 2002. On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet. 18:90–95.
  • Yang, A., Kaghad M., Wang Y., Gillett E., Fleming M. D., Dotsch V., Andrews N. C., Caput D., and McKeon F.. 1998. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2:305–316.
  • Yang, A., and McKeon F.. 2000. P63 and P73: P53 mimics, menaces and more. Nat. Rev. Mol. Cell Biol. 1:199–207.
  • Yang, A., Walker N., Bronson R., Kaghad M., Oosterwegel M., Bonnin J., Vagner C., Bonnet H., Dikkes P., Sharpe A., McKeon F., and Caput D.. 2000. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99–103.
  • Yin, Y., Stephen C. W., Luciani M. G., and Fahraeus R.. 2002. p53 stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat. Cell Biol. 4:462–467.
  • Zacharatos, P. V., Gorgoulis V. G., Kotsinas A., Manolis E. N., Liloglou T., Rassidakis A. N., Kanavaros P., Field J. D., Halazonetis T., and Kittas C.. 1999. Modulation of wild-type p53 activity by mutant p53 R273H depends on the p53 responsive element (p53RE). A comparative study between the p53REs of the MDM2, WAFI/Cip1 and Bax genes in the lung cancer environment. WAFI/Cip1 = WAF1/Cip1. Anticancer Res. 19:579–587.
  • Zhu, J., Zhou W., Jiang J., and Chen X.. 1998. Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J. Biol. Chem. 273:13030–13036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.