35
Views
33
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The H19 Differentially Methylated Region Marks the Parental Origin of a Heterologous Locus without Gametic DNA Methylation

, , , &
Pages 3588-3595 | Received 18 Nov 2003, Accepted 30 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Bartolomei, M. S., Webber A. L., Brunkow M. E., and Tilghman S. M.. 1993. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7:1663–1673.
  • Bell, A. C., and Felsenfeld G.. 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485.
  • Brandeis, M., Kafri T., Ariel M., Chaillet J. R., McCarrey J., Razin A., and Cedar H.. 1993. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12:3669–3677.
  • Brenton, J. D., Drewell R. A., Viville S., Hilton K. J., Barton S. C., Ainscough J. F.-X., and Surani M. A.. 1999. A silencer element identified in Drosophila is required for imprinting of H19 reporter transgenes in mice. Proc. Natl. Acad. Sci. USA 96:9242–9247.
  • Cranston, M., Spinka T., Elson D., and Bartolomei M.. 2001. Elucidation of the minimal sequence required to imprint H19 transgenes. Genomics 73:98–107.
  • Davis, T., Yang G., McCarrey J., and Bartolomei M.. 2000. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet. 9:2885–2894.
  • Debaun, M., Niemitz E., McNeil D., and Brandenburg S.. 2002. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am. J. Hum. Genet. 70:604–611.
  • DeChiara, T. M., Robertson E. J., and Efstratiadis A.. 1991. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859.
  • Drewell, R., Goddard C., Thomas J., and Surani M.. 2002. Methylation-dependent silencing of the H19 imprinting control region by McCP2. Nucleic Acids Res. 30:1139–1144.
  • El-Maarri, O., K. Buiting, E. Peery, P. Kroisel, B. Balaban, K. Wagner, B. Urman, J. Heyd, C. Lich, C. Brannan, J. Walter, and B. Horsthemke. 2001. Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat. Genet. 27:341–344.
  • Elson, D. A., and Bartolomei M. S.. 1997. A 5′ differentially methylated sequence and the 3′-flanking region are necessary for H19 transgene imprinting. Mol. Cell. Biol. 17:309–317.
  • Feinberg, A. P. 2000. DNA methylation, genomic imprinting and cancer. Curr. Top. Microbiol. Immunol. 249:87–99.
  • Feinberg, A. P. 1999. Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer. Cancer Res. 59(Suppl.):1743–1746.
  • Ferguson-Smith, A. C., H. Sasaki, B. M. Cattanach, and M. A. Surani. 1993. Parental-origin-specific epigenetic modifications of the mouse H19 gene. Nature 362:751–755.
  • Gabant, P., Forrester L., Nichols J., Van Reeth T., De Mees C., Pajack B., Watt A., Smitz J., Alexandre H., Szpirer C., and Szpirer J.. 2002. Alpha-fetoprotein, the major fetal serum protein, is not essential for embryonic development but is required for female fertility. Proc. Natl. Acad. Sci. USA 99:12865–12870.
  • Gould, T. D., and Pfeifer K.. 1998. Imprinting of mouse Kvlqt1 is developmentally regulated. Hum. Mol. Gen. 7:483–487.
  • Hao, Y., Crenshaw T., Moulton T., Newcomb E., and Tycko B.. 1993. Tumour-suppressor activity of H19 RNA. Nature 365:764–767.
  • Hark, A. T., and Tilghman S. M.. 1998. Chromatin conformation of the H19 epigenetic mark. Hum. Mol. Gen. 7:1979–1985.
  • Hark, A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., and Tilghman S. M.. 2000. CTCF mediates methylation-sensitive enhancer blocking activity at the H19/Igf2 locus. Nature 405:486–489.
  • Holmgren, C., Kanduri C., Dell G., Ward A., Mukhopadhya R., Kanduri M., Lobanenkov V., and Ohlsson R.. 2001. CpG methylation regulates the Igf2/H19 insulator. Curr. Biol. 11:1128–1130.
  • Howell, C., Bestor T., Ding F., Latham K., Mertineit C., Trasler J., and Chaillet J.. 2001. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838.
  • Kaffer, C., Grinberg A., and Pfeifer K.. 2001. Regulatory mechanisms at the mouse Igf2/H19 locus. Mol. Cell. Biol. 21:8189–8196.
  • Kaffer, C. R., Srivastava M., Park K., Ives E., Hsieh S., Batlle J., Grinberg A., Huang S. P., and Pfeifer K.. 2000. A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14:1908–1919.
  • Kanduri, C., Holmgren C., Pilartz M., Franklin G., Kanduri M., Liu L., Ginjala V., Ulleras E., Mattsson R., and Ohlsson R.. 2000. The 5′ flank of mouse H19 in unusual chromatin conformation unidirectionally blocks enhancer-promoter communication. Curr. Biol. 10:449–457.
  • Kanduri, C., Pant V., Loukinov D., Pugacheva E., Qi C., Wolffe A., Ohlsson R., and Lobanenkov V.. 2000. Functional association of CTCF with the insulator upstream of the H19 gene is parent-of-origin specific and methylation-sensitive. Curr. Biol. 10:853–856.
  • Khosla, S., Aitchison A., Gregory R., Allen N. D., and Feil R.. 1999. Parental allele-specific chromatin configuration in a boundary-imprinting-control element upstream of the mouse H19 gene. Mol. Cell. Biol. 19:2556–2566.
  • Koide, T., Ainscough J.-X., Wijgerde M., and Surani M.. 1994. Comparative analysis of Igf2/H19 imprinted domain: identification of a highly conserved intergenic DNaseI hypersensitive region. Genomics 24:1–8.
  • Lasko, M., Picher J., Gorman J., Sauer B., Okamoto Y., Lee E., Alt F., and Westphal H.. 1996. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93:5860–5865.
  • Leighton, P. A., Saam J. R., Ingram R. S., Stewart C. L., and Tilghman S. M.. 1995. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9:2079–2089.
  • Maher, E. R., and Reik W.. 2000. Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J. Clin. Investig. 105:247–252.
  • Morison, I., and Reeve A.. 1998. Insulin-like growth factor 2 and overgrowth: molecular biology and clinical implications. Mol. Med. Today 4:110–115.
  • Onyango, P., Miller W., Lehoczky J., Leung C., Birren B., Wheelan S., Dewar K., and Feinberg A.. 2000. Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15.5 imprinted domain. Genome Res. 10:1697–1710.
  • Paulsen, M., Davies K. R., Bowden L. M., Villar A. J., Franck O., Fuermann M., Dean W. L., Moore K. R., Rodrigues N., Davies K. E., Hu R.-J., Feinberg A. P., Maher E. R., Reik W., and Walter J.. 1998. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Hum. Mol. Genet. 7:1149–1159.
  • Paulsen, M., El-Maarri O., Engemann S., Stroedicke M., Franck O., Davies K., Reinhardt R., Reik W., and Walter J.. 2000. Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse. Hum. Mol. Genet. 9:1829–1841.
  • Pfeifer, K., Leighton P. A., and Tilghman S. M.. 1996. The structural H19 gene is required for transgene imprinting. Proc. Natl. Acad. Sci. USA 93:13876–13883.
  • Reik, W., Dean W., and Walter J.. 2001. Epigenetic reprogramming in mammalian development. Science 293:1089–1093.
  • Reik, W., and Murrell A.. 2000. Genomic imprinting. Silence across the border. Nature 405:408–409.
  • Spear, B. 1999. Alpha-fetoprotein gene regulation: lessons from transgenic mice. Semin. Cancer Biol. 9:109–116.
  • Srivastava, M., Frolova E., Rottinghaus B., Boe S., Grinberg A., Lee E., Love P., and Pfeifer K.. 2003. Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus. J. Biol. Chem. 278:5977–5983.
  • Srivastava, M., Hsieh S., Grinberg A., Williams-Simon L., Huang S.-P., and Pfeifer K.. 2000. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting element. Genes Dev. 14:1186–1195.
  • Szabo, P., Tang S., Rentsendorj A., Pfeifer G. P., and Mann J. R.. 2000. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol. 10:607–610.
  • Szabo, P. A., Pfeifer G. P., and Mann J. R.. 1998. Characterization of novel parent-specific epigenetic modifications upstream of the imprinted mouse H19 gene. Mol. Cell. Biol. 18:6767–6776.
  • Thorvaldsen, J. L., and Bartolomei M. S.. 2000. Mothers setting boundaries. Science 288:2145–2146.
  • Thorvaldsen, J. L., Duran K. L., and Bartolomei M. S.. 1998. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12:3693–3702.
  • Tremblay, K. D., Duran K. L., and Bartolomei M. S.. 1997. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17:4322–4329.
  • Tremblay, K. D., Saam J. R., Ingram R. S., Tilghman S. M., and Bartolomei M. S.. 1995. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9:407–413.
  • Tycko, B., Trasler J., and Bestor T.. 1997. Genomic imprinting: gametic mechanisms and somatic consequences. J. Androl. 18:480–486.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.