22
Views
29
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

High-Level Activation of Transcription of the Yeast U6 snRNA Gene in Chromatin by the Basal RNA Polymerase III Transcription Factor TFIIIC

, &
Pages 3596-3606 | Received 26 Nov 2003, Accepted 05 Feb 2004, Published online: 27 Mar 2023

REFERENCES

  • Aalfs, J. D., and Kingston R. E.. 2000. What does ‘chromatin remodeling' mean? Trends Biochem. Sci. 25:548–555.
  • Allain, F. H., Yen Y. M., Masse J. E., Schultze P., Dieckmann T., Johnson R. C., and Feigon J.. 1999. Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding. EMBO J. 18:2563–2579.
  • Allewell, N. 1988. Why does DNA bend? Trends Biochem. Sci. 13:193–195.
  • Baker, R. E., Camier S., Sentenac A., and Hall B. D.. 1987. Gene size differentially affects the binding of yeast transcription factor tau to two intragenic regions. Proc. Natl. Acad. Sci. USA 84:8768–8772.
  • Becker, P. B., and Horz W.. 2002. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71:247–273.
  • Brow, D. A., and Guthrie C.. 1988. Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature 334:213–219.
  • Brow, D. A., and Guthrie C.. 1990. Transcription of a yeast U6 snRNA gene requires a polymerase III promoter element in a novel position. Genes Dev. 4:1345–1356.
  • Bulger, M., and Kadonaga J. T.. 1994. Biochemical reconstitution of chromatin with physiological nucleosome spacing. Methods Mol. Genet. 5:241–261.
  • Burnol, A.-F., Margottin F., Huet J., Almouzni G., Prioleau M.-N., Mechali M., and Sentenac A.. 1993. TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 362:475–477.
  • Burnol, A.-F., Margottin F., Schultz P., Marsolier M.-C., Oudet P., and Sentenac A.. 1993. Basal promoter and enhancer element of yeast U6 snRNA gene. J. Mol. Biol. 233:644–658.
  • Cairns, B. R. 1998. Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem. Sci. 23:20–25.
  • Eschenlauer, J. B., Kaiser M. W., Gerlach V. L., and Brow D. A.. 1993. Architecture of a yeast U6 RNA gene promoter. Mol. Cell. Biol. 13:3015–3026.
  • Formosa, T., Eriksson P., Wittmeyer J., Ginn J., Yu Y., and Stillman D. J.. 2001. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J. 20:3606–3617.
  • Gavin, A.-C., Bosche M., Krause R., et al. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147.
  • Geiduschek, E. P., and Kassavetis G. A.. 2001. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310:1–26.
  • George, P. C., and Kadonaga J. T.. 1996. Primer-extension analysis of RNA, p. 133–139. In Krieg P. A. (ed.), A laboratory guide to RNA: isolation, analysis and synthesis. Wiley-Liss, Inc., New York, N.Y.
  • Gerlach, V. L., Whitehall S. K., Geiduschek E. P., and Brow D. A.. 1995. TFIIIB placement on a yeast U6 RNA gene in vivo is directed primarily by TFIIIC rather than by sequence-specific DNA contacts. Mol. Cell. Biol. 15:1455–1466.
  • Hayes, J. J., Dimitrov S., and Wolffe A. P.. 1994. Physical and chemical analysis of the dynamics of nucleosome and chromatin structure. Chemtracts Biochem. Mol. Biol. 5:269–290.
  • Howe, L., and Ausio J.. 1998. Nucleosome translational position, not histone acetylation, determines TFIIIA binding to nucleosomal Xenopus laevis 5S rRNA genes. Mol. Cell. Biol. 18:1156–1162.
  • Hsieh, Y.-J., Kundu T. K., Wang Z., Kovelman R., and Roeder R. G.. 1999. The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol. Cell. Biol. 19:7697–7704.
  • Huibregtse, J. M., and Engelke D. R.. 1989. Genomic footprinting of a yeast tRNA gene reveals stable complexes over the 5′-flanking regions. Mol. Cell. Biol. 9:3244–3252.
  • Joazeiro, C. A. P., G. A. Kassavetis, and E. P. Geiduschek. 1994. Identical components of yeast transcription factor IIIB are required and sufficient for transcription of TATA box-containing and TATA-less genes. Mol. Cell. Biol. 14:2798–2808.
  • Kadonaga, J. T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin modifying machines. Cell 92:307–313.
  • Kassabov, S. R., Zhang B., Persinger J., and Bartholomew B.. 2003. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11:391–403.
  • Kassavetis, G. A., Bartholomew B., Blanco J. A., Johnson T. E., and Geiduschek E. P.. 1991. Two essential components of the Saccharomyces cerevisiae transcription factor TFIIIB: transcription and DNA-binding properties. Proc. Natl. Acad. Sci. USA 88:7308–7312.
  • Kassavetis, G. A., Kumar A. K., Ramirez E., and Geiduschek E. P.. 1998. Functional and structural organization of Brf, the TFIIB-related component of the RNA polymerase III transcription initiation complex. Mol. Cell. Biol. 18:5587–5599.
  • Kassavetis, G. A., Riggs D. L., Negri R., Nguyen L. H., and Geiduschek E. P.. 1989. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol. Cell. Biol. 9:2551–2566.
  • Kingston, R. E., and Narlikar G. J.. 1999. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13:2339–2352.
  • Kruppa, M., Moir R. D., Kolodrubetz D., and Willis I. M.. 2001. Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. Mol. Cell 7:309–318.
  • Kundu, T. K., Wang Z., and Roeder R. G.. 1999. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol. Cell. Biol. 19:1605–1615.
  • Kunkel, G. R. 1991. RNA polymerase III transcription of genes that lack internal control regions. Biochim. Biophys. Acta 1088:1–9.
  • Lemon, B., and Tjian R.. 2000. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14:2551–2569.
  • Lopez, S., Livingstone-Zatchej M., Jourdain S., Thoma F., Sentenac A., and Marsolier M.-C.. 2001. High-mobility-group proteins NHP6A and NHP6B participate in activation of the RNA polymerase III SNR6 gene. Mol. Cell. Biol. 21:3096–3104.
  • Luger, K., Mader A. W., Richmond R. K., Sargent D. F., and Richmond T. J.. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260.
  • Margottin, F., Dujardin G., Girard M., Egly J. M., Huet J., and Sentenac A.. 1991. Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science 251:424–426.
  • Marsolier, M.-C., Tanaka S., Livingstone-Zatchej M., Grunstein M., Thoma F., and Sentenac A.. 1995. Reciprocal interferences between nucleosomal organization and transcriptional activity of the yeast SNR6 gene. Genes Dev. 9:410–422.
  • Martin, M. P., Gerlach V. L., and Brow D. A.. 2001. A novel upstream RNA polymerase III promoter element becomes essential when the chromatin structure of the yeast U6 RNA gene is altered. Mol. Cell. Biol. 21:6429–6439.
  • Mizuguchi, G., Tsukiyama T., Wisniewski J., and Wu C.. 1997. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell 1:141–150.
  • Mizuguchi, G., Vassilev A., Tsukiyama T., Nakatani Y., and Wu C.. 2001. ATP-dependent nucleosome remodeling and histone hyperacetylation synergistically facilitate transcription of chromatin. J. Biol. Chem. 276:14773–14783.
  • Moenne, A., Camier S., Anderson G., Margottin F., Beggs J., and Sentenac A.. 1990. The U6 gene of Saccharomyces cerevisiae is transcribed by RNA polymerase C (III) in vivo and in vitro. EMBO J. 9:271–277.
  • Narlikar, G. J., Fan H.-Y., and Kingston R. E.. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487.
  • Ng, H. H., Robert F., Young R. A., and Struhl K.. 2002. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 16:806–819.
  • Orphanides, G., and Reinberg D.. 2000. RNA polymerase II elongation through chromatin. Nature 407:471–475.
  • Paule, M. R., and White R. J.. 2000. Transcription by RNA polymerases I and III. Nucleic Acids Res. 28:1283–1298.
  • Pazin, M. J., and Kadonaga J. T.. 1997. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88:737–740.
  • Pazin, M. J., Bhargava P., Geiduschek E. P., and Kadonaga J. T.. 1997. Nucleosome mobility and the maintenance of nucleosome positioning. Science 276:809–812.
  • Pazin, M. J., Hermann J. W., and Kadonaga J. T.. 1998. Promoter structure and transcriptional activation with chromatin templates assembled in vitro. J. Biol. Chem. 273:34653–34660.
  • Pazin, M. J., Kamakaka R. T., and Kadonaga J. T.. 1994. ATP-dependent nucleosome configuration and transcriptional activation from preassembled chromatin templates. Science 266:2007–2011.
  • Pazin, M. J., Sheridan P. L., Cannon K., Cao Z., Keck J. G., Kadonaga J. T., and Jones K. A.. 1996. NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev. 10:37–49.
  • Robinson, K. M., and Kadonaga J. T.. 1998. The use of chromatin templates to recreate transcriptional regulatory phenomena in vitro. Biochim. Biophys. Acta 1378:M1–M6.
  • Ruone, S., Rhoades A. R., and Formosa T.. 2003. Multiple Nhp6 molecules are required to recruit Spt16-Pob3 to form yFACT complexes and to reorganize nucleosomes. J. Biol. Chem. 278:45288–45295.
  • Satchwell, S. C., Drew H. R., and Travers A. A.. 1986. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191:659–675.
  • Schild, C., Claret F.-X., Wahli W., and Wolffe A. P.. 1993. A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro. EMBO J. 12:423–433.
  • Schramm, L., and Hernandez N.. 2002. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16:2593–2620.
  • Schultz, P., Marzuoki N., Marck C., Ruet A., Oudet P., and Sentenac A.. 1989. The two DNA-binding domains of yeast transcription factor tau as observed by scanning transmission electron microscopy. EMBO J. 8:3815–3824.
  • Studitsky, V. M., Kassavetis G. A., Geiduschek E. P., and Felsenfeld G.. 1997. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278:1960–1963.
  • Stunkel, W., Kober I., and Seifart K. H.. 1997. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol. Cell. Biol. 17:4397–4405.
  • Szerlong, H., Saha A., and Cairns B. R.. 2003. The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22:3175–3187.
  • Thomas, G. H., and Elgin S. C.. 1988. Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter. EMBO J. 7:2191–2201.
  • Tse, C., Sera T., Wolffe A. P., and Hansen J. C.. 1998. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18:4629–4638.
  • Tyler, J. K., and Kadonaga J. T.. 1999. The “dark side” of chromatin remodeling: repressive effects on transcription. Cell 99:443–446.
  • Urnov, F. D., and Wolffe A. P.. 2001. An array of positioned nucleosomes potentiates thyroid hormone receptor action in vivo. J. Biol. Chem. 276:19753–19761.
  • Urnov, F. D., and Wolffe A. P.. 2001. Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 20:2991–3006.
  • Varga-Weisz, P. 2001. ATP dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 20:3076–3085.
  • Vignali, M., Hassan A. H., Neely K. E., and Workman J. L.. 2000. ATP-dependent chromatin remodeling complexes. Mol. Cell. Biol. 20:1899–1910.
  • Vitolo, J. M., Thiriet C., and Hayes J. J.. 2000. The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol. Cell. Biol. 20:2167–2175.
  • White, R. J. 1998. RNA polymerase III transcription, 2nd ed. Springer-Verlag, New York, N.Y.
  • White, R. J. 2002. RNA polymerase III transcription, 3rd ed. Landes Bioscience, Georgetown, Tex.
  • Wolffe, A. P. 1994. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem. Sci. 19:240–244.
  • Wolffe, A. P. 1999. Chromatin: structure and function, 3rd ed. Academic Press, San Diego, Calif.
  • Wolffe, A. P. 2001. Chromatin remodeling: why it is important in cancer. Oncogene 20:2988–2990.
  • Workman, J. L., and Kingston R. E.. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67:545–557.
  • Wu, C. 1980. Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Nature 286:854–860.
  • Yen, Y. M., Wong B., and Johnson R. C.. 1998. Determinants of DNA binding and bending by the Saccharomyces cerevisiae high mobility group protein NHP6A that are important for its biological activities: role of the unique N terminus and putative intercalating methionine. J. Biol. Chem. 273:4424–4435.
  • Yudkovsky, N., Logie C., Hahn S., and Peterson C. L.. 1999. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev. 13:2369–2374.
  • Zhao, X., Pendergrast P. S., and Hernandez S.. 2001. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol. Cell 7:539–549.
  • Zhu, Z., and Thiele D. J.. 1996. A specialized nucleosome modulates transcription factor access to a C. glabrata metal responsive promoter. Cell 87:459–470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.