25
Views
49
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Phosphorylation of the Yeast Heat Shock Transcription Factor Is Implicated in Gene-Specific Activation Dependent on the Architecture of the Heat Shock Element

&
Pages 3648-3659 | Received 30 Oct 2003, Accepted 09 Feb 2004, Published online: 27 Mar 2023

REFERENCES

  • Ahn, S.-G., and Thiele D. J.. 2003. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 17:516–528.
  • Ahn, S.-G., Liu P. C., Klyachko K., Morimoto R. I., and Thiele D. J.. 2001. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev. 15:2134–2145.
  • Amin, J., Ananthan J., and Voellmy R.. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761–3769.
  • Boeke J. D., LaCroute F., and Fink G. R.. 1983. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Bonner, J. J., Heyward S., and Fackenthal D. L.. 1992. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol. Cell. Biol. 12:1021–1030.
  • Bonner, J. J., Carlson T., Fackenthal D. L., Paddock D., Storey K., and Lea K.. 2000. Complex regulation of the yeast heat shock transcription factor. Mol. Biol. Cell 11:1739–1751.
  • Boorstein, W. R., and Craig E. A.. 1990. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. J. Biol. Chem. 265:18912–18921.
  • Bulman, A. L., Hubl S. T., and Nelson H. C. M.. 2001. The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains. J. Biol. Chem. 276:40254–40262.
  • Chen, T., and Parker C. S.. 2002. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor. Proc. Natl. Acad. Sci. USA 99:1200–1205.
  • Chen, Y., Barlev N. A., Westergaard O., and Jakobsen B. K.. 1993. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J. 12:5007–5018.
  • Chu, B., Soncin F., Price B. D., Stevenson M. A., and Calderwood S. K.. 1996. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271:30847–30857.
  • Chu, B., Zhong R., Soncin F., Stevenson M. A., and Calderwood S. K.. 1998. Transcriptional activity of heat shock factor 1 at 37°C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Cα and Cζ. J. Biol. Chem. 273:18640–18646.
  • Cotto, J. J., Kline M., and Morimoto R. I.. 1996. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation: evidence for a multistep pathway of regulation. J. Biol. Chem. 271:3355–3358.
  • Dai, R., Frejtag W., He B., Zhang Y., and Mivechi N. F.. 2000. c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J. Biol. Chem. 275:18210–18218.
  • Drees, B. L., Grotkop E. K., and Nelson H. C. M.. 1997. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain. J. Mol. Biol. 273:61–74.
  • Erkine, A. M., Magrogan S. F., Sekinger E. A., and Gross D. S.. 1999. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro. Mol. Cell. Biol. 19:1627–1639.
  • Feder, M. E., and Hofmann G. E.. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243–282.
  • Flick, K. E., Gonzalez L., Jr., Harrison C. J., and Nelson H. C.. 1994. Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains: implications for DNA binding by trimeric proteins. J. Biol. Chem. 269:12475–12481.
  • Gallo, G. J., Prentice H., and Kingston R. E.. 1993. Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol. Cell. Biol. 13:749–761.
  • Giardina, C., and Lis J. T.. 1995. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15:2737–2744.
  • Gross, D. S., English K. E., Collins K. W., and Lee S. W.. 1990. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. J. Mol. Biol. 216:611–631.
  • He, B., Meng Y.-H., and Mivechi N. H.. 1998. Glycogen synthase kinase 3β and extracellular signal-regulated protein kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol. Cell. Biol. 18:6624–6633.
  • Høj, A., and B. K. Jakobsen. 1994. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J. 13:2617–2624.
  • Holmberg, C. I., Hietakangas V., Mikhailov A., Rantanen J. O., Kallio M., Meinander A., Hellman J., Morrice N., MacKintosh C., Morimoto R. I., Eriksson J. E., and Sistonen L.. 2001. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J. 20:3800–3810.
  • Jakobsen, B. K., and Pelham H. R.. 1988. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8:5040–5042.
  • Jakobsen, B. K., and Pelham H. R. B.. 1991. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J. 10:369–376.
  • Kline, M. P., and Morimoto R. I.. 1997. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17:2107–2115.
  • Knauf, U., Newton E. M., Kyriakis J., and Kingston R. E.. 1996. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10:2782–2793.
  • Kroeger, P. E., and Morimoto R. I.. 1994. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol. Cell. Biol. 14:7592–7603.
  • Lee, S., Carlson T., Christian N., Lea K., Kedzie J., Reilly J. P., and Bonner J. J.. 2000. The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol. Biol. Cell 11:1753–1764.
  • Leung, D. W., Chen E., and Goeddel D. V.. 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1:11–15.
  • Littlefield, O., and Nelson H. C.. 1999. A new use for the 'wing' of the 'winged' helix-turn-helix motif in the HSF-DNA cocrystal. Nat. Struct. Biol. 6:464–470.
  • Liu, X.-D., and Thiele D. J.. 1996. Oxidative stress induces heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev. 10:592–603.
  • Liu, X.-D., Liu P. C. C., Santoro N., and Thiele D. J.. 1997. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J. 16:6466–6477.
  • Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788–3796.
  • Nieto-Sotelo, J., G. Wiederrecht, A. Okuda, and C. S. Parker. 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62:807–817.
  • Pirkkala, L., Nykanen P., and Sistonen L.. 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15:1118–1131.
  • Sakurai, H., and Fukasawa T.. 1999. Activator-specific requirement for the general transcription factor IIE in yeast. Biochem. Biophys. Res. Commun. 261:734–739.
  • Sakurai, H., and Fukasawa T.. 2001. A novel domain of the yeast heat shock factor that regulates its activation function. Biochem. Biophys. Res. Commun. 285:696–701.
  • Sakurai, H., Hashikawa N., Imazu H., and Fukasawa T.. 2003. Carboxy-terminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase. Genes Cells 8:951–961.
  • Saltsman, K. A., Prentice H. L., and Kingston R. E.. 1999. Mutations in the Schizosaccharomyces pombe heat shock factor that differentially affect responses to heat and cadmium stress. Mol. Gen. Genet. 261:161–169.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Santoro, N., Johansson N., and Thiele D. J.. 1998. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol. Cell. Biol. 18:6340–6352.
  • Sarge, K. D., Murphy S. P., and Morimoto R. I.. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13:1392–1407. (Errata, 13:3122-3123 and 3838-3839.)
  • Sewell, A. K., Yokoya F., Yu W., Miyagawa T., Murayama T., and Winge D. R.. 1995. Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance. J. Biol. Chem. 270:25079–25086.
  • Shi, Y., Mosser D. D., and Morimoto R. I.. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12:654–666.
  • Sikorski, R. S., and Hieter P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Silar, P., Butler G., and Thiele D. J.. 1991. Heat shock transcription factor activates transcription of the yeast metallothionein gene. Mol. Cell. Biol. 11:1232–1238.
  • Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793–805.
  • Sorger, P. K., Lewis M. J., and Pelham H. R.. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81–84.
  • Sorger, P. K., and Nelson H. C. M.. 1989. Trimerization of a yeast transcriptional activator via coiled-coil motif. Cell 59:807–814.
  • Sorger, P. K., and Pelham H. R. B.. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864.
  • Tachibana, T., Astumi S., Shioda R., Ueno M., Uritani M., and Ushimaru T.. 2002. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae. J. Biol. Chem. 277:22140–22146.
  • Tamai, K. T., Liu X., Silar P., Sosinowski T., and Thiele D. J.. 1994. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol. Cell. Biol. 14:8155–8165.
  • Tanabe, M., Sasai N., Nagata K., Liu X. D., Liu P. C. C., Thiele D. J., and Nakai A.. 1999. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J. Biol. Chem. 274:27845–27856.
  • Wei, R., Wilkinson H., Pfeifer K., Schneider C., Young R., and Guarente L.. 1986. Two or more copies of Drosophila heat shock consensus sequence serve to activate transcription in yeast. Nucleic Acids Res. 14:8183–8188.
  • Wiederrecht, G., Seto D., and Parker C. S.. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853.
  • Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11:441–469.
  • Xia, W., and Voellmy R.. 1997. Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J. Biol. Chem. 272:4094–4102.
  • Xiao, H., Perisic O., and Lis J. T.. 1991. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585–593.
  • Yang, W., Gahl W., and Hamer D.. 1991. Role of heat shock transcription factor in yeast metallothionein gene expression. Mol. Cell. Biol. 11:3676–3681.
  • Young, M. R., and Craig E. A.. 1993. Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct. Mol. Cell. Biol. 13:5637–5646.
  • Zou, J., Guo Y., Guettouche T., Smith D. F., and Voellmy R.. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480.
  • Zuo, J., Rungger D., and Voellmy R.. 1995. Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell. Biol. 15:4319–4330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.