10
Views
70
CrossRef citations to date
0
Altmetric
Cell Growth and Development

GIT1 Activates p21-Activated Kinase through a Mechanism Independent of p21 Binding

, , &
Pages 3849-3859 | Received 05 Aug 2003, Accepted 30 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Bagrodia, S., Bailey D., Lenard Z., Hart M., Guan J. L., Premont R. T., Taylor S. J., and Cerione R. A.. 1999. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem. 274:22393–22400.
  • Bagrodia, S., Taylor S. J., Creasy C. L., Chernoff J., and Cerione R. A.. 1995. Identification of a mouse p21Cdc42/Rac activated kinase. J. Biol. Chem. 270:22731–22737.
  • Bishop, A. L., and Hall A.. 2000. Rho GTPases and their effector proteins. Biochem. J. 348:241–455.
  • Bokoch, G. M. 2003. Biology of the p21-activated kinases. Annu. Rev. Biochem. 72:743–781.
  • Bokoch, G. M., Wang Y., Bohl B. P., Sells M. A., Quilliam L. A., and Knaus U. G.. 1996. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J. Biol. Chem. 271:25746–25749.
  • Brown, M. C., West K. A., and Turner C. E.. 2002. Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol. Biol. Cell. 13:1550–1565.
  • Chong, C., Tan L., Lim L., and Manser E.. 2001. The mechanism of pak activation. autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem. 276:17347–17353.
  • Daniels, R. H., Zenke F. T., and Bokoch G. M.. 1999. AlphaPix stimulates p21-activated kinase activity through exchange factor-dependent and -independent mechanisms. J. Biol. Chem. 274:6047–6050.
  • del Pozo, M. A., L. S. Price, N. B. Alderson, X. D. Ren, and M. A. Schwartz. 2000. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19:2008–2014.
  • Dharmawardhane, S., Schurmann A., Sells M. A., Chernoff J., Schmid S. L., and Bokoch G. M.. 2000. Regulation of macropinocytosis by p21-activated kinase-1. Mol. Biol. Cell 11:3341–3352.
  • Di Cesare, A., S. Paris, C. Albertinazzi, S. Dariozzi, J. Andersen, M. Mann, R. Longhi, and I de Curtis. 2000. p95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nat. Cell Biol. 2:521–530.
  • Etienne-Manneville, S., and A. Hall. 2002. Rho GTPases in cell biology. Nature 420:629–635.
  • Feng, Q., Albeck J. G., Cerione R. A., and Yang W.. 2002. Regulation of the Cool/Pix proteins: key binding partners of the Cdc42/Rac targets, the p21-activated kinases. J. Biol. Chem. 277:5644–5650.
  • Galisteo, M. L., Chernoff J., Su Y. C., Skolnik E. Y., and Schlessinger J.. 1996. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J. Biol. Chem. 271:20997–21000.
  • Kim, S., Ko J., Shin H., Lee J. R., Lim C., Han J. H., Altrock W. D., Garner C. C., Gundelfinger E. D., Premont R. T., Kaang B. K., and Kim E.. 2003. The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. J. Biol. Chem. 278:6291–6300.
  • Koh, C. G., Manser E., Zhao Z. S., Ng C. P., and Lim L.. 2001. Beta1PIX, the PAK-interacting exchange factor, requires localization via a coiled-coil region to promote microvillus-like structures and membrane ruffles. J. Cell Sci. 114:4239–4251.
  • Koh, C. G., Tan E. J., Manser E., and Lim L.. 2002. The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr. Biol. 12:317–321.
  • Kozma, R., Ahmed S., Best A., and Lim L.. 1995. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15:1942–1952.
  • Lei, M., Lu W., Meng W., Parrini M. C., Eck M. J., Mayer B. J., and Harrison S. C.. 2000. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102:387–397.
  • Lu, W., Katz S., Gupta R., and Mayer B. J.. 1997. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol. 7:85–94.
  • Manabe, R.-I., Kovalenko M., Webb D. J., and Horwitz A. R.. 2002. GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J. Cell Sci. 115:1497–1510.
  • Mandiyan, V., Andreev J., Schlessinger J., and Hubbard S. R.. 1999. Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein beta. EMBO J. 18:6890–6898.
  • Manser, E., Huang H. Y., Loo T. H., Chen X. Q., Dong J. M., Leung T., and Lim L.. 1997. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell. Biol. 17:129–1143.
  • Manser, E., Leung T., Salihuddin H., Zhao Z. S., and Lim L. A.. 1994. Brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46.
  • Manser, E., Loo T. H., Koh C. G., Zhao Z. S., Chen X. Q., Tan L., Tan I., Leung T., and Lim L.. 1998. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1:183–192.
  • Matafora, V., Paris S., Dariozzi S., and de Curtis I.. 2001. Molecular mechanisms regulating the subcellular localization of p95-APP1 between the endosomal recycling compartment and sites of actin organization at the cell surface. J. Cell Sci. 114:4509–4520.
  • Obermeier, A., Ahmed S., Manser E., Yen S. C., Hall C., and Lim L.. 1998. PAK promotes morphological changes by acting upstream of Rac. EMBO J. 17:4328–4339.
  • Paris, S., Longhi R., Santambrogio P., and de Curtis I.. 2003. Leucine-zipper-mediated homo- and hetero-dimerization of GIT family p95-ARF GTPase-activating protein, PIX-, paxillin-interacting proteins 1 and 2. Biochem J. 372:391–398.
  • Parnas, D., Haghighi A. P., Fetter R. D., Kim S. W., and Goodman C. S.. 2001. Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32:415–424.
  • Premont, R. T., Claing A., Vitale N., Perry S. J., and Lefkowitz R. J.. 2000. The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J. Biol. Chem. 275:22373–22380.
  • Sells, M. A., Pfaff A., and Chernoff J.. 2000. Temporal and spatial distribution of activated Pak1 in fibroblasts. J. Cell Biol. 151:1449–1458.
  • Turner, C. E., Brown M. C., Perrotta J. A., Riedy M. C., Nikolopoulos S. N., McDonald A. R., Bagrodia S., Thomas S., and Leventhal P. S.. 1999. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145:851–863.
  • Vitale, N., Patton W. A., Moss J., Vaughan M., Lefkowitz R. J., and Premont R. T.. 2000. GIT proteins, a novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J. Biol. Chem. 275:13901–13906.
  • Zenke, F. T., King C. C., Bohl B. P., and Bokoch G. M.. 1999. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 274:32565–32573.
  • Zhang, H., Webb D. J., Asmussen H., and Horwitz A. F.. 2003. Synapse formation is regulated by the signaling adaptor GIT1. J. Cell Biol. 161:131–142.
  • Zhao, Z. S., Manser E., Chen X. Q., Chong C., Leung T., and Lim L.. 1998. A conserved negative regulatory region in αPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol. 18:2153–2163.
  • Zhao, Z. S., Manser E., and Lim L.. 2000. Interaction between PAK and Nck: a template for Nck targets and role of PAK autophosphorylation. Mol. Cell. Biol. 20:3906–3917.
  • Zhao, Z. S., Manser E., Loo T. H., and Lim L.. 2000. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. 20:6354–6363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.