96
Views
99
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Microbial Synergy via an Ethanol-Triggered Pathway

, &
Pages 3874-3884 | Received 06 Oct 2003, Accepted 30 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Baumann, P. 1968. Isolation of Acinetobacter from soil and water. J. Bacteriol. 96:39–42.
  • Baumann, P., Doudoroff M., and Stanier R. Y.. 1968. Study of the Moraxella group. I. Genus Moraxella and the Neisseria catarrhalis group. J. Bacteriol. 95:58–73.
  • Baumann, P., Doudoroff M., and Stanier R. Y.. 1968. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 95:1520–1541.
  • Benndorf, D., Loffhagen N., and Babel W.. 1999. Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus. Electrophoresis 20:781–789.
  • Bergogne-Berezin, E., and K. J. Towner. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9:148–165.
  • Ciriacy, M. 1997. Alcohol dehydrogenases, p. 213–223. In Entian K.-D. (ed.), Yeast sugar metabolism. Technomic Publishing Company, Lancaster, Pa.
  • De Deken, R. H. 1966. The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44:149–156.
  • Drewke, C., Thielen J., and Ciriacy M.. 1990. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J. Bacteriol. 172:3909–3917.
  • Fleming, A. 1929. On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10:226–236.
  • Forster, D. H., and Daschner F. D.. 1998. Acinetobacter species as nosocomial pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 17:73–77.
  • Ganzhorn, A. J., Green D. W., Hershey A. D., Gould R. M., and Plapp B. V.. 1987. Kinetic characterization of yeast alcohol dehydrogenases. Amino acid residue 294 and substrate specificity. J. Biol. Chem. 262:3754–3761.
  • Goldstein, A. L., and McCusker J. H.. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553.
  • Guthrie, C. F., and Fink G. (ed.). 1991. Guide to yeast genetics and molecular biology, vol. 194. Academic Press, San Diego, Calif.
  • Hecker, M., and Volker U.. 2001. General stress response of Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 44:35–91.
  • Juni, E. 1978. Genetics and physiology of Acinetobacter. Annu. Rev. Microbiol. 32:349–371.
  • Juni, E. 1972. Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J. Bacteriol. 112:917–931.
  • Juni, E. 1974. Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Appl. Microbiol. 27:16–24.
  • Juni, E., and Janik A.. 1969. Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). J. Bacteriol. 98:281–288.
  • Kabelitz, N., Santos P. M., and Heipieper H. J.. 2003. Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol. Lett. 220:223–227.
  • Kurz, C. L., Chauvet S., Andres E., Aurouze M., Vallet I., Michel G. P., Uh M., Celli J., Filloux A., De Bentzmann S., Steinmetz I., Hoffmann J. A., Finlay B. B., Gorvel J. P., Ferrandon D., and Ewbank J. J.. 2003. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 22:1451–1460.
  • Kurz, C. L., and Ewbank J. J.. 2000. Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol. 8:142–144.
  • Lagunas, R. 1979. Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars. Mol. Cell. Biochem. 27:139–146.
  • Lagunas, R. 1986. Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 2:221–228.
  • Li, G. C., and Hahn G. M.. 1978. Ethanol-induced tolerance to heat and to adriamycin. Nature 274:699–701.
  • Lutstorf, U., and Megnet R.. 1968. Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae. I. Physiological control of ADH-2 and properties of ADH-2 and ADH-4. Arch. Biochem. Biophys. 126:933–944.
  • McCusker, J. H., Clemons K. V., Stevens D. A., and Davis R. W.. 1994. Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136:1261–1269.
  • Mylonakis, E., Ausubel F. M., Perfect J. R., Heitman J., and Calderwood S. B.. 2002. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99:15675–15680.
  • Navon-Venezia, S., Z. Zosim, A. Gottlieb, R. Legmann, S. Carmeli, E. Z. Ron, and E. Rosenberg. 1995. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 61:3240–3244.
  • Nurmikko, V. 1956. Biochemical factors affecting symbiosis among bacteria. Experientia 12:245–249.
  • Petersohn, A., Brigulla M., Haas S., Hoheisel J. D., Volker U., and Hecker M.. 2001. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol. 183:5617–5631.
  • Plesset, J., Palm C., and McLaughlin C. S.. 1982. Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 108:1340–1345.
  • Rince, A., Flahaut S., and Auffray Y.. 2000. Identification of general stress genes in Enterococcus faecalis. Int. J. Food Microbiol. 55:87–91.
  • Sakamoto, T., and Murata N.. 2002. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 5:208–210.
  • Sleator, R. D., and Hill C.. 2001. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26:49–71.
  • Sniegowski, P. D., Dombrowski P. G., and Fingerman E.. 2002. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res. 1:299–306.
  • Starmer, W. T., Ganter P. F., Aberdeen V., Lachance M. A., and Phaff H. J.. 1987. The ecological role of killer yeasts in natural communities of yeasts. Can. J. Microbiol. 33:783–796.
  • Strathern, J. J., and Broach E. W., Jr. (ed.). 1981. Life cycle and inheritance. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Sulston, J., and Hodgkin J.. 1988. Methods, p. 587–606. In Wood W. B. (ed.), The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Tan, M. W., Mahajan-Miklos S., and Ausubel F. M.. 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96:715–720.
  • Tan, M. W., Rahme L. G., Sternberg J. A., Tompkins R. G., and Ausubel F. M.. 1999. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 96:2408–2413.
  • Towner, K. J. 1997. Clinical importance and antibiotic resistance of Acinetobacter spp. Proceedings of a symposium held on 4-5 November 1996 at Eilat, Israel. J. Med. Microbiol. 46:721–746.
  • Young, E. T., and Pilgrim D.. 1985. Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:3024–3034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.