9
Views
56
CrossRef citations to date
0
Altmetric
Cell Growth and Development

p150Sal2 Is a p53-Independent Regulator of p21WAF1/CIP

, , &
Pages 3885-3893 | Received 05 Sep 2003, Accepted 21 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Bandera, C. A., Takahashi H., Behbakht K., Liu P. C., LiVolsi V. A., Benjamin I., Morgan M. A., King S. A., Rubin S. C., and Boyd J.. 1997. Deletion mapping of two potential chromosome 14 tumor suppressor gene loci in ovarian carcinoma. Cancer Res. 57:513–515.
  • Barrio, R., de Celis J. F., Bolshakov S., and Kafatos F. C.. 1999. Identification of regulatory regions driving the expression of the Drosophila spalt complex at different developmental stages. Dev. Biol. 215:33–47.
  • Carl, M., and Wittbrodt J.. 1999. Graded interference with FGF signalling reveals its dorsoventral asymmetry at the mid-hindbrain boundary. Development 126:5659–5667.
  • Dey, D. C., Bronson R. P., Dahl J., Carroll J. P., and Benjamin T. L.. 2000. Accelerated development of polyoma tumors and embryonic lethality: different effects of p53 loss on related mouse backgrounds. Cell Growth Differ. 11:231–237.
  • Dotto, G. P. 2000. p21(WAF1/Cip1): more than a break to the cell cycle? Biochim. Biophys. Acta 1471:M43–M56.
  • el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Engels, S., Kohlhase J., and McGaughran J.. 2000. A SALL1 mutation causes a branchio-oto-renal syndrome-like phenotype. J. Med. Genet. 37:458–460.
  • Farrell, E. R., and Munsterberg A. E.. 2000. csal1 is controlled by a combination of FGF and Wnt signals in developing limb buds. Dev. Biol. 225:447–458.
  • Freund, R., Bronson R. T., and Benjamin T. L.. 1992. Separation of immortalization from tumor induction with polyoma large T mutants that fail to bind the retinoblastoma gene product. Oncogene 7:1979–1987.
  • Gartel, A. L., and Tyner A. L.. 1999. Transcriptional regulation of the p21(WAF1/CIP1) gene. Exp. Cell Res. 246:280–289.
  • Jin, X., Burke W., Rothman K., and Lin J.. 2002. Resistance to p53-mediated growth suppression in human ovarian cancer cells retain endogenous wild-type p53. Anticancer Res. 22:659–664.
  • Johnson, P., Gray D., Mowat M., and Benchimol S.. 1991. Expression of wild-type p53 is not compatible with continued growth of p53-negative tumor cells. Mol. Cell. Biol. 11:1–11.
  • Kim, J. H., Skates S. J., Uede T., Wong K. K., Schorge J. O., Feltmate C. M., Berkowitz R. S., Cramer D. W., and Mok S. C.. 2002. Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA 287:1671–1679.
  • Kohlhase, J., Heinrich M., Schubert L., Liebers M., Kispert A., Laccone F., Turnpenny P., Winter R. M., and Reardon W.. 2002. Okihiro syndrome is caused by SALL4 mutations. Hum. Mol. Genet. 11:2979–2987.
  • Kohlhase, J., Schuh R., Dowe G., Kuhnlein R. P., Jackle H., Schroeder B., Schulz-Schaeffer W., Kretzschmar H. A., Kohler A., Muller U., Raab-Vetter M., Burkhardt E., Engel W., and Stick R.. 1996. Isolation, characterization, and organ-specific expression of two novel human zinc finger genes related to the Drosophila gene spalt. Genomics 38:291–298.
  • Kohlhase, J., Wischermann A., Reichenbach H., Froster U., and Engel W.. 1998. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat. Genet. 18:81–83.
  • Koster, R., Stick R., Loosli F., and Wittbrodt J.. 1997. Medaka spalt acts as a target gene of hedgehog signaling. Development 124:3147–3156.
  • Kuhnlein, R. P., Bronner G., Taubert H., and Schuh R.. 1997. Regulation of Drosophila spalt gene expression. Mech. Dev. 66:107–118.
  • Kuhnlein, R. P., Frommer G., Friedrich M., Gonzalez-Gaitan M., Weber A., Wagner-Bernholz J. F., Gehring W. J., Jackle H., and Schuh R.. 1994. spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo. EMBO J. 13:168–179.
  • Kurisaki, K., Kurisaki A., Valcourt U., Terentiev A. A., Pardali K., Ten Dijke P., Heldin C. H., Ericsson J., and Moustakas A.. 2003. Nuclear factor YY1 inhibits transforming growth factor β- and bone morphogenetic protein-induced cell differentiation. Mol. Cell. Biol. 23:4494–4510.
  • Larose, A., St-Onge L., and Bastin M.. 1990. Mutations in polyomavirus large T affecting immortalization of primary rat embryo fibroblasts. Virology 176:98–105.
  • Li, D., Dower K., Ma Y., Tian Y., and Benjamin T. L.. 2001. A tumor host range selection procedure identifies p150sal2 as a target of polyoma virus large T antigen. Proc. Natl. Acad. Sci. USA 98:14619–14624.
  • Liu, M., Iavarone A., and Freedman L. P.. 1996. Transcriptional activation of the human p21WAF1/CIP1 gene by retinoic acid receptor. Correlation with retinoid induction of U937 cell differentiation. J. Biol. Chem. 271:31723–31728.
  • Ludlow, J. W., DeCaprio J. A., Huang C. M., Lee W. H., Paucha E., and Livingston D. M.. 1989. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56:57–65.
  • Ma, Y., Li D., Chai L., Luciani A. M., Ford D., Morgan J., and Maizel A. L.. 2001. Cloning and characterization of two promoters for the human HSAL2 gene and their transcriptional repression by the Wilms tumor suppressor gene product. J. Biol. Chem. 276:48223–48230.
  • McBurney, M. W., and Rogers B. J.. 1982. Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev. Biol. 89:503–508.
  • McKay, R., and DiMaio D.. 1981. Binding of an SV40 T antigen-related protein to the DNA of SV40 regulatory mutants. Nature 289:810–813.
  • Nishinakamura, R., Matsumoto Y., Nakao K., Nakamura K., Sato A., Copeland N. G., Gilbert D. J., Jenkins N. A., Scully S., Lacey D. L., Katsuki M., Asashima M., and Yokota T.. 2001. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115.
  • Pabo, C. O., and Sauer R. T.. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61:1053–1095.
  • Pardali, K., Kurisaki A., Moren A., ten Dijke P., Kardassis D., and Moustakas A.. 2000. Role of Smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-β. J. Biol. Chem. 275:29244–29256.
  • Raftery, L. A., and Sutherland D. J.. 1999. TGF-β family signal transduction in Drosophila development: from Mad to Smads. Dev. Biol. 210:251–268.
  • Ramirez, P. T., Gershenson D. M., Tortolero-Luna G., Ramondetta L. M., Fightmaster D., Wharton J. T., and Wolf J. K.. 2001. Expression of cell-cycle mediators in ovarian cancer cells after transfection with p16INK4a, p21WAF1/Cip-1, and p53. Gynecol. Oncol. 83:543–548.
  • Sambucetti, L. C., Fischer D. D., Zabludoff S., Kwon P. O., Chamberlin H., Trogani N., Xu H., and Cohen D.. 1999. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem. 274:34940–34947.
  • Sato, A., Matsumoto Y., Koide U., Kataoka Y., Yoshida N., Yokota T., Asashima M., and Nishinakamura R.. 2003. Zinc finger protein Sall2 is not essential for embryonic and kidney development. Mol. Cell. Biol. 23:62–69.
  • Sengupta, P. S., McGown A. T., Bajaj V., Blackhall F., Swindell R., Bromley M., Shanks J. H., Ward T., Buckley C. H., Reynolds K., Slade R. J., and Jayson G. C.. 2000. p53 and related proteins in epithelial ovarian cancer. Eur. J. Cancer 36:2317–2328.
  • Weinmann, A. S., and Farnham P. J.. 2002. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26:37–47.
  • Wenham, R. M., Lancaster J. M., and Berchuck A.. 2002. Molecular aspects of ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 16:483–497.
  • Yaginuma, Y., and Westphal H.. 1992. Abnormal structure and expression of the p53 gene in human ovarian carcinoma cell lines. Cancer Res. 52:4196–4199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.