36
Views
122
CrossRef citations to date
0
Altmetric
Cell Growth and Development

CK2 Controls Multiple Protein Kinases by Phosphorylating a Kinase-Targeting Molecular Chaperone, Cdc37

&
Pages 4065-4074 | Received 25 Dec 2003, Accepted 05 Feb 2004, Published online: 27 Mar 2023

REFERENCES

  • Abbas-Terki, T., O. Donze, and D. Picard. 2000. The molecular chaperone Cdc37 is required for Ste11 function and pheromone-induced cell cycle arrest. FEBS Lett. 467:111–116.
  • Ahmed, K., Gerber D. A., and Cochet C.. 2002. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 12:226–230.
  • Akten, B., Jauch E., Genova G. K., Kim E. Y., Edery I., Raabe T., and Jackson F. R.. 2003. A role for CK2 in the Drosophila circadian oscillator. Nat. Neurosci. 6:251–257.
  • Bandhakavi, S., McCann R., Hanna D., and Glover C.. 2003. A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J. Biol. Chem. 278:2829–2836.
  • Basso, A. D., Solit D. B., Chiosis G., Giri B., Tsichlis P., and Rosen N.. 2002. Akt forms an intracellular complex with Hsp90 and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. 277:39858–39866.
  • Buchner, J. 1999. Hsp90 & co.—a holding for folding. Trends Biochem. Sci. 24:136–141.
  • Chen, G., Cao P., and Goeddel D. V.. 2002. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol. Cell 9:401–410.
  • Csermely, P., Schnaider T., Soti C., Prohaszka Z., and Nardai G.. 1998. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79:129–168.
  • Cutforth, T., and Rubin G. M.. 1994. Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77:1027–1036.
  • Dai, K., Kobayashi R., and Beach D.. 1996. Physical interaction of mammalian CDC37 with CDK4. J. Biol. Chem. 271:22030–22034.
  • Dey, B., Lightbody J. J., and Boschelli F.. 1996. CDC37 is required for p60v-src activity in yeast. Mol. Biol. Cell 7:1405–1417.
  • Farrell, A., and Morgan D. O.. 2000. Cdc37 promotes the stability of protein kinases Cdc28 and Cak1. Mol. Cell. Biol. 20:749–754.
  • Fliss, A. E., Fang Y., Boschelli F., and Caplan A. J.. 1997. Differential in vivo regulation of steroid hormone receptor activation by Cdc37p. Mol. Biol. Cell 8:2501–2509.
  • Gerber, M. R., Farrell A., Deshaies R. J., Herskowitz I., and Morgan D. O.. 1995. Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. Proc. Natl. Acad. Sci. USA 92:4651–4655.
  • Grammatikakis, N., Lin J. H., Grammatikakis A., Tsichlis P. N., and Cochran B. H.. 1999. p50cdc37 acting in concert with Hsp90 is required for Raf-1 function. Mol. Cell. Biol. 19:1661–1672.
  • Guerra, B., and Issinger O. G.. 1999. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 20:391–408.
  • Hartson, S. D., Irwin A. D., Shao J., Scroggins B. T., Volk L., Huang W., and Matts R. L.. 2000. p50cdc37 is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules. Biochemistry 39:7631–7644.
  • Hunter, T., and Poon R. Y. C.. 1997. Cdc37: a protein kinase chaperone? Trends Cell Biol. 7:157–161.
  • Kamath, R. S., Fraser A. G., Dong Y., Poulin G., Durbin R., Gotta M., Kanapin A., Le Bot N., Moreno S., Sohrmann M., Welchman D. P., Zipperlen P., and Ahringer J.. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:220–221.
  • Kimura, Y., Rutherford S. L., Miyata Y., Yahara I., Freeman B. C., Yue L., Morimoto R. I., and Lindquist S.. 1997. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev. 11:1775–1785.
  • Koyasu, S., Nishida E., Kadowaki T., Matsuzaki F., Iida K., Harada F., Kasuga M., Sakai H., and Yahara I.. 1986. Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc. Natl. Acad. Sci. USA 83:8054–8058.
  • Lamphere, L., Fiore F., Xu X., Brizuela L., Keezer S., Sardet C., Draetta G. F., and Gyuris J.. 1997. Interaction between Cdc37 and Cdk4 in human cells. Oncogene 14:1999–2004.
  • Lange, B. M., Rebollo E., Herold A., and Gonzalez C.. 2002. Cdc37 is essential for chromosome segregation and cytokinesis in higher eukaryotes. EMBO J. 21:5364–5374.
  • Lee, P., Rao J., Fliss A., Yang E., Garrett S., and Caplan A. J.. 2002. The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. J. Cell Biol. 159:1051–1059.
  • Lin, J. M., Kilman V. L., Keegan K., Paddock B., Emery-Le M., Rosbash M., and Allada R.. 2002. A role for casein kinase 2α in the Drosophila circadian clock. Nature 420:816–820.
  • Litchfield, D. W. 2003. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369:1–15.
  • MacLean, M., and Picard D.. 2003. Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8:114–119.
  • Maloney, A., and Workman P.. 2002. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin. Biol. Ther. 2:3–24.
  • Meggio, F., and Pinna L. A.. 2003. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17:349–368.
  • Miyata, Y., Akashi M., and Nishida E.. 1999. Molecular cloning and characterization of a novel member of the MAP kinase superfamily. Genes Cells 4:299–309.
  • Miyata, Y., Chambraud B., Radanyi C., Leclerc J., Lebeau M.-C., Renoir J.-M., Shirai R., Catelli M.-G., Yahara I., and Baulieu E.-E.. 1997. Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II (CK2): regulation of HSP90-binding activity of FKBP52. Proc. Natl. Acad. Sci. USA 94:14500–14505.
  • Miyata, Y., Ikawa Y., Shibuya M., and Nishida E.. 2001. Specific association of a set of molecular chaperones including HSP90 and Cdc37 with MOK, a member of the MAP kinase superfamily. J. Biol. Chem. 276:21841–21848.
  • Miyata, Y., and Yahara I.. 1992. The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J. Biol. Chem. 267:7042–7047.
  • Miyata, Y., and Yahara I.. 1995. Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry 34:8123–8129.
  • Miyata, Y., and Yahara I.. 2000. p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90. Oncogene 19:1477–1484.
  • Neckers, L. 2002. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. 8:S55–S61.
  • Ozaki, T., Irie K., and Sakiyama S.. 1995. Molecular cloning and cell cycle-dependent expression of a novel gene that is homologous to cdc37. DNA Cell Biol. 14:1017–1023.
  • Perdew, G. H., Wiegand H., Vanden Heuvel J. P., Mitchell C., and Singh S. S.. 1997. A 50 kilodalton protein associated with raf and pp60v-src protein kinases is a mammalian homolog of the cell cycle control protein cdc37. Biochemistry 36:3600–3607.
  • Pinna, L. A. 2002. Protein kinase CK2: a challenge to canons. J. Cell Sci. 115:3873–3878.
  • Pinna, L. A., and Meggio F.. 1997. Protein kinase CK2 (“casein kinase-2”) and its implication in cell division and proliferation. Prog. Cell Cycle Res. 3:77–97.
  • Pratt, W. B., and Toft D. O.. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228:111–133.
  • Rao, J., Lee P., Benzeno S., Cardozo C., Allbertus J., Robins D. M., and Caplan A. J.. 2001. Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor. J. Biol. Chem. 276:5814–5820.
  • Reed, S. I. 1980. The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95:561–577.
  • Ruzzene, M., Penzo D., and Pinna L. A.. 2002. Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem. J. 364:41–47.
  • Sarno, S., Reddy H., Meggio F., Ruzzene M., Davies S. P., Donella-Deana A., Shugar D., and Pinna L. A.. 2001. Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (“casein kinase-2”). FEBS Lett. 496:44–48.
  • Seldin, D. C., and Leder P.. 1995. Casein kinase II α transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267:894–897.
  • Shao, J., Grammatikakis N., Scroggins B. T., Uma S., Huang W., Chen J.-J., Hartson S. D., and Matts R. L.. 2001. Hsp90 regulates p50cdc37 function during the biogenesis of the active conformation of the heme-regulated eIF2α kinase. J. Biol. Chem. 276:206–214.
  • Shao, J., Prince T., Hartson S. D., and Matts R. L.. 2003. Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. J. Biol. Chem. 278:38117–38220.
  • Siligardi, G., Panaretou B., Meyer P., Singh S., Woolfson D. N., Piper P. W., Pearl L. H., and Prodromou C.. 2002. Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J. Biol. Chem. 277:20151–20159.
  • Silverstein, A. M., Grammatikakis N., Cochran B. H., Chinkers M., and Pratt W. B.. 1998. p50cdc37 binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. J. Biol. Chem. 273:20090–20095.
  • Stancato, L. F., Chow Y.-H., Hutchison K. A., Perdew G. H., Jove R., and Pratt W. B.. 1993. Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J. Biol. Chem. 268:21711–21716.
  • Stepanova, L., Finegold M., DeMayo F., Schmidt E., and Harper J. W.. 2000. The oncoprotein kinase chaperone CDC37 functions as an oncogene in mice and collaborates with both c-myc and cyclin D1 in transformation of multiple tissues. Mol. Cell. Biol. 20:4462–4473.
  • Stepanova, L., Leng X., Parker S. B., and Harper J. W.. 1996. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 10:1491–1502.
  • Stepanova, L., Yang G., DeMayo F., Wheeler T. M., Finegold M., Thompson T. C., and Harper J. W.. 2000. Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia. Oncogene 27:2186–2193.
  • Wang, X., Grammatikakis N., and Hu J.. 2002. Role of p50/Cdc37 in hepadnavirus assembly and replication. J. Biol. Chem. 277:24361–24367.
  • Xu, X., Landesman-Bollag E., Channavajhala P. L., and Seldin D. C.. 1999. Murine protein kinase CK2: gene and oncogene. Mol. Cell. Biochem. 191:65–74.
  • Yahara, I., Minami Y., and Miyata Y.. 1998. The 90-kDa stress protein, Hsp90, is a novel molecular chaperone. Ann. N. Y. Acad. Sci. 851:54–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.