5
Views
16
CrossRef citations to date
0
Altmetric
Gene Expression

The H1 Phosphorylation State Regulates Expression of CDC2 and Other Genes in Response to Starvation in Tetrahymena thermophila

, , &
Pages 3914-3922 | Received 18 Nov 2004, Accepted 16 Feb 2005, Published online: 27 Mar 2023

REFERENCES

  • Alami, R., Y. Fan, S. Pack, T. M. Sonbuchner, A. Besse, O. Lin, J. M. Greally, A. I. Skoultchi, and E. E. Bouhassira. 2003. Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc. Natl. Acad. Sci. USA 100:5920–5925.
  • Allis, C. D., and M. A. Gorovsky. 1981. Histone phosphorylation in macro- and micronuclei of Tetrahymena thermophila. Biochemistry 20:3828–3833.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1988. Current protocols in molecular biology. Wiley Interscience, New York, N.Y.
  • Barra, J. L., L. Rhounim, J. L. Rossignol, and G. Faugeron. 1999. Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span. Mol. Cell. Biol. 20:61–69.
  • Bhattacharjee, R. N., G. C. Banks, K. W. Trotter, H. L. Lee, and T. K. Archer. 2001. Histone H1 phosphorylation by Cdk2 selectively modulates mouse mammary tumor virus transcription through chromatin remodeling. Mol. Cell. Biol. 21:5417–5425.
  • Blank, T. A., and P. B. Becker. 1995. Electrostatic mechanism of nucleosome spacing. J. Mol. Biol. 252:305–313.
  • Bradbury, E. M. 1992. Reversible histone modifications and the chromosome cell cycle. Bioessays 14:9–16.
  • Bradbury, E. M., R. J. Inglis, H. R. Matthews, and T. A. Langan. 1974. Molecular basis of control of mitotic cell division in eukaryotes. Nature 249:553–556.
  • Calzone, F. J. 1982. Ph.D. thesis. University of Rochester, Rochester, N.Y.
  • Carruthers, L. M., J. Bednar, C. L. Woodcock, and J. C. Hansen. 1998. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry 37:14776–14787.
  • Carruthers, L. M. and J. C. Hansen. 2000. The core histone N termini function independently of linker histones during chromatin condensation. J. Biol. Chem. 275:28246–28251.
  • Chadee, D. N., C. D. Allis, J. A. Wright, and J. R. Davie. 1997. Histone H1b phosphorylation is dependent upon ongoing transcription and replication in normal and ras-transformed mouse fibroblasts. J. Biol. Chem. 272:8113–8116.
  • Chadee, D. N., W. R. Taylor, R. A. Hurta, C. D. Allis, J. A. Wright, and J. R. Davie. 1995. Increased phosphorylation of histone H1 in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase kinase. J. Biol. Chem. 270:20098–20105.
  • Chan, S. J., B. San Segundo, M. B. McCormick, and D. F. Steiner. 1986. Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs. Proc. Natl. Acad. Sci. USA 83:7721–7725.
  • Contreras, A., T. K. Hale, D. L. Stenoien, J. M. Rosen, M. A. Mancini, and R. E. Herrera. 2003. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol. Cell. Biol. 23:8626–8636.
  • Dedon, P. C., J. A. Soults, C. D. Allis, and M. A. Gorovsky. 1991. A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal. Biochem. 197:83–90.
  • Doerder, F. P. 2000. Sequence and expression of the SerJ immobilization antigen gene of Tetrahymena thermophila regulated by dominant epistasis. Gene 257:319–326.
  • Doerder, F. P., and L. E. DeBault. 1975. Cytofluorometric analysis of nuclear DNA during meiosis, fertilization and macronuclear development in the ciliate Tetrahymena pyriformis, Syngen 1. J. Cell Sci. 17:471–493.
  • Dou, Y., J. Bowen, Y. Liu, and M. A. Gorovsky. 2002. Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. J. Cell Biol. 158:1161–1170.
  • Dou, Y., and M. A. Gorovsky. 2002. Regulation of transcription by H1 phosphorylation in Tetrahymena is position independent and requires clustered sites. Proc. Natl. Acad. Sci. USA 99:6142–6146.
  • Dou, Y., and M. A. Gorovsky. 2000. Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Mol. Cell 6:225–231.
  • Dou, Y., C. A. Mizzen, M. Abrams, C. D. Allis, and M. A. Gorovsky. 1999. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol. Cell 4:641–647.
  • Downs, J. A., E. Kosmidou, A. Morgan, and S. P. Jackson. 2003. Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Mol. Cell 11:1685–1692.
  • Engberg, J., and Nielsen, H. 1990. Complete sequence of the extrachromosomal rDNA molecule from the ciliate Tetrahymena thermophila strain B1868VII. Nucleic Acids Res. 18:6915–6919.
  • Estruch, J. J., L. Crossland, and S. A. Goff. 1994. Plant activating sequences: positively charged peptides are functional as transcriptional activation domains. Nucleic Acids Res. 22:3983–3989.
  • Glover, C. V. C., K. J. Vavra, S. D. Guttman, and M. A. Gorovsky. 1981. Heat shock and deciliation induce phosphorylation of histone H1 in Tetrahymena pyriformis. Cell 23:73–77.
  • Gorovsky, M. A., J. B. Keevert, and G. L. Pleger. 1974. Histone F1 of Tetrahymena macronuclei. Unique electrophoretic properties and phosphorylation of F1 in an amitotic nucleus. J. Cell Biol. 61:134–145.
  • Gorovsky, M. A., M.-C. Yao, J. B. Keevert, and G. L. Pleger. 1975. Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. IX:311–327.
  • Guo, X. W., J. P. Th'ng, R. A. Swank, H. J. Anderson, C. Tudan, E. M. Bradbury, and M. Roberge. 1995. Chromosome condensation induced by fostriecin does not require p34cdc2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation. EMBO J. 14:976–985.
  • Hansen, J. C. 2002. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31:361–392.
  • Hedrick, S. M., E. A. Nielsen, J. Kavaler, D. I. Cohen, and M. M. Davis. 1984. Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature 308:153–158.
  • Hellauer, K., E. Sirard, and B. Turcotte. 2001. Decreased expression of specific genes in yeast cells lacking histone H1. J. Biol. Chem. 276:13587–13592.
  • Herrera, R. E., F. Chen, and R. A. Weinberg. 1996. Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts. Proc. Natl. Acad. Sci. USA 93:11510–11515.
  • Horn, P. J., and C. L. Peterson. 2002. Molecular biology. Chromatin higher order folding—wrapping up transcription. Science 297:1824–1827.
  • Jedrusik, M. A., and E. Schulze. 2001. A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development 128:1069–1080.
  • Karrer, K. M., S. L. Peiffer, and M. E. DiTomas. 1993. Two distinct gene subfamilies within the family of cysteine protease genes. Proc. Natl. Acad. Sci. USA 90:3063–3067.
  • Kishimoto, T. 1994. Cell reproduction: induction of M-phase events by cyclin-dependent cdc2 kinase. Int. J. Dev. Biol. 38:185–191.
  • Konishi, A., S. Shimizu, J. Hirota, T. Takao, Y. Fan, Y. Matsuoka, L. Zhang, Y. Yoneda, Y. Fujii, A. I. Skoultchi, and Y. Tsujimoto. 2003. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114:673–688.
  • Koop, R., L. Di Croce, and M. Beato. 2003. Histone H1 enhances synergistic activation of the MMTV promoter in chromatin. EMBO J. 22:588–599.
  • Kuang, W. W., D. A. Thompson, R. V. Hoch, and R. J. Weigel. 1998. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucleic Acids Res. 26:1116–1123.
  • Kuo, M. H., and C. D. Allis. 1999. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19:425–433.
  • Langan, T. A., J. Gautier, M. Lohka, R. Hollingsworth, S. Moreno, P. Nurse, J. Maller, and R. A. Sclafani. 1989. Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol. Cell. Biol. 9:3860–3868.
  • Larminie, C. G., and I. L. Johnstone. 1996. Isolation and characterization of four developmentally regulated cathepsin B-like cysteine protease genes from the nematode Caenorhabditis elegans. DNA Cell Biol. 15:75–82.
  • Lee, H. L., and T. K. Archer. 1998. Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO J. 17:1454–1466.
  • Lu, M. J., S. S. Mpoke, C. A. Dadd, and C. D. Allis. 1995. Phosphorylated and dephosphorylated linker histone H1 reside in distinct chromatin domains in Tetrahymena macronuclei. Mol. Biol. Cell 6:1077–1087.
  • Martindale, D. W., and P. J. Bruns. 1983. Cloning of abundant mRNA species present during conjugation of Tetrahymena thermophila: identification of mRNA species present exclusively during meiosis. Mol. Cell. Biol. 3:1857–1865.
  • Mizzen, C. A., Y. Dou, Y. Liu, R. G. Cook, M. A. Gorovsky, and C. D. Allis. 1999. Identification and mutation of phosphorylation sites in a linker histone. Phosphorylation of macronuclear H1 is not essential for viability in Tetrahymena. J. Biol. Chem. 274:14533–14536.
  • Ohsumi, K., C. Katagiri, and T. Kishimoto. 1993. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262:2033–2035.
  • Pennings, S., G. Meersseman, and E. M. Bradbury. 1994. Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. Proc. Natl. Acad. Sci. USA 91:10275–10279.
  • Prymakowska-Bosak, M., M. R. Przewloka, J. Iwkiewicz, S. Egierszdorff, M. Kuras, N. Chaubet, C. Gigot, S. Spiker, and A. Jerzmanowski. 1996. Histone H1 overexpressed to high level in tobacco affects certain developmental programs but has limited effect on basal cellular functions. Proc. Natl. Acad. Sci. USA 93:10250–10255.
  • Roth, S. Y., and C. D. Allis. 1992. Chromatin condensation: does histone H1 dephosphorylation play a role. Trends Biochem. Sci. 17:93–98.
  • Roth, S. Y., M. P. Collini, G. Draetta, D. Beach, and C. D. Allis. 1991. A cdc2-like kinase phosphorylates histone H1 in the amitotic macronucleus of Tetrahymena. EMBO J. 10:2069–2075.
  • Roth, S. Y., I. G. Schulman, R. Richman, R. G. Cook, and C. D. Allis. 1988. Characterization of phosphorylation sites in histone H1 in the amitotic macronucleus of Tetrahymena during different physiological states. J. Cell Biol. 107:2473–2482.
  • Schulman, I. G., R. G. Cook, R. Richman, and C. D. Allis. 1987. Tetrahymena contain two distinct and unusual high mobility group (HMG)-like proteins. J. Cell Biol. 104:1485–1494.
  • Shang, Y., B. Li, and M. A. Gorovsky. 2002. Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J. Cell Biol. 158:1195–1206.
  • Shang, Y., X. Song, J. Bowen, J. Gao, J. Gaertig, and M. A. Gorovsky. 2002. A robust, inducible-repressible promoter greatly facilitates gene knockouts, conditional expression and overexpression of homologous and heterologous genes in Tetrahymena thermophila. Proc. Natl. Acad. Sci. USA 99:3734–3739.
  • Shen, X., L. Yu, J. W. Weir, and M. A. Gorovsky. 1995. Linker histones are not essential and affect chromatin condensation in vivo. Cell 82:47–56.
  • Shen, X. T., and M. A. Gorovsky. 1996. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86:475–483.
  • Steinbach, O. C., A. P. Wolffe, and R. A. W. Rupp. 1997. Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389:395–399.
  • Swank, R. A., J. P. H. Th'ng, X. W. Guo, J. Valdez, E. M. Bradbury, and L. R. Gurley. 1997. Four distinct cyclin-dependent kinases phosphorylate histone H1 at all of its growth-related phosphorylation sites. Biochemistry 36:13761–13768.
  • Takami, Y., and T. Nakayama. 1997. A single copy of linker H1 genes is enough for proliferation of the DT40 chicken B cell line, and linker H1 variants participate in regulation of gene expression. Genes Cells 2:711–723.
  • Th'ng, J. P., P. S. Wright, J. Hamaguchi, M. G. Lee, C. J. Norbury, P. Nurse, and E. M. Bradbury. 1990. The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell 63:313–324.
  • Th'ng, J. P. H., X.-W. Guo, R. A. Swank, H. A. Crissman, and E. M. Bradbury. 1994. Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation. J. Biol. Chem. 269:9568–9573.
  • Travers, A. 1999. The location of the linker histone on the nucleosome. Trends Biochem. Sci. 24:4–7.
  • Wang, Z., and D. D. Brown. 1991. A gene expression screen. Proc. Natl. Acad. Sci. USA 88:11505–11509.
  • Wolffe, A. P., S. Khochbin, and S. Dimitrov. 1997. What do linker histones do in chromatin. Bioessays 19:249–255.
  • Workman, J. L., and R. E. Kingston. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67:545–579.
  • Yamashita, K., H. Yasuda, J. Pines, K. Yasumoto, H. Nishitani, M. Ohtsubo, T. Hunter, T. Sugimura, and T. Nishimoto. 1990. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 9:4331–4338.
  • Zhang, H., S. M. Adl, and J. D. Berger. 1999. Two distinct classes of mitotic cyclin homologues, Cyc1 and Cyc2, are involved in cell cycle regulation in the ciliate Paramecium tetraurelia. J. Eukaryot. Microbiol. 6:585–596.
  • Zlatanova, J., and K. Van Holde. 1992. Histone H1 and transcription: still an enigma. J. Cell Sci. 103:889–895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.