128
Views
123
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

The Ciliary Rootlet Maintains Long-Term Stability of Sensory Cilia

, , , , , , , , & show all
Pages 4129-4137 | Received 19 Nov 2004, Accepted 25 Feb 2005, Published online: 27 Mar 2023

REFERENCES

  • Amato, P. A., and D. L. Taylor. 1986. Probing the mechanism of incorporation of fluorescently labeled actin into stress fibers. J. Cell Biol. 102:1074–1084.
  • Applegate, R. A., and A. B. Bonds. 1981. Induced movement of receptor alignment toward a new pupillary aperture. Investig. Ophthalmol. Vis. Sci. 21:869–872.
  • Besharse, J. C., and C. J. Horst. 1990. The photoreceptor connecting cilium: a model for the transition zone, p. 389–417. In R. A. Bloodgood (ed.), Ciliary and flagellar membranes. Plenum, New York, N.Y.
  • Fariss, R. N., R. S. Molday, S. K. Fisher, and B. Matsumoto. 1997. Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways. J. Comp. Neurol. 387:148–156.
  • Fawcett, D. W., and K. R. Porter. 1954. A study of the fine structure of ciliated epithelia. J. Morphol. 94:221–282.
  • Fuchs, E. 1995. Keratins and the skin. Annu. Rev. Cell Dev. Biol. 11:123–153.
  • Guo, L., R. S. Johnson, and J. C. Schuh. 2000. Biochemical characterization of endogenously formed eosinophilic crystals in the lungs of mice. J. Biol. Chem. 275:8032–8037.
  • Ho, C. L., J. L. Martys, A. Mikhailov, G. G. Gundersen, and R. K. Liem. 1998. Novel features of intermediate filament dynamics revealed by green fluorescent protein chimeras. J. Cell Sci. 111:1767–1778.
  • Hong, D. H., B. Pawlyk, M. Sokolov, K. J. Strissel, J. Yang, B. Tulloch, A. F. Wright, V. Y. Arshavsky, and T. Li. 2003. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Investig. Ophthalmol. Vis. Sci. 44:2413–2421.
  • Laties, A. M., and J. M. Enoch. 1971. An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors. Investig. Ophthalmol. 10:69–77.
  • Lemullois, M., P. Gounon, and D. Sandoz. 1987. Relationships between cytokeratin filaments and centriolar derivatives during ciliogenesis in the quail oviduct. Biol. Cell 61:39–49.
  • Li, T., M. A. Sandberg, B. S. Pawlyk, B. Rosner, K. C. Hayes, T. P. Dryja, and E. L. Berson. 1998. Effect of vitamin A supplementation on rhodopsin mutants threonine-17→methionine and proline-347→serine in transgenic mice and in cell cultures. Proc. Natl. Acad. Sci. USA 95:11933–11938.
  • Liu, X., O. V. Bulgakov, X. H. Wen, M. L. Woodruff, B. Pawlyk, J. Yang, G. L. Fain, M. A. Sandberg, C. L. Makino, and T. Li. 2004. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 101:13903–13908.
  • Molday, R. 1988. Monoclonal antibodies to rhodopsin and other proteins of rod outer segments. Prog. Retin. Eye Res. 8:173–209.
  • Nonaka, S., Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido, and N. Hirokawa. 1998. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837.
  • Saxton, W. M., D. L. Stemple, R. J. Leslie, E. D. Salmon, M. Zavortink, and J. R. McIntosh. 1984. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99:2175–2186.
  • Sjostrand, F. S. 1953. The ultrastructure of the inner segments of the retinal rods of the guinea pig eye as revealed by electron microscopy. J. Cell. Comp. Physiol. 42:45–70.
  • Sokolov, M., A. L. Lyubarsky, K. J. Strissel, A. B. Savchenko, V. I. Govardovskii, E. N. Pugh, Jr., and V. Y. Arshavsky. 2002. Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 34:95–106.
  • Spira, A. W., and G. E. Milman. 1979. The structure and distribution of the cross-striated fibril and associated membranes in guinea pig photoreceptors. Am. J. Anat. 155:319–337.
  • Stiles, W. S., and B. H. Crawford. 1933. The luminous efficiency of rays entering the eye pupil at different points. Proc. R. Soc. London 112:428–450.
  • Vikstrom, K. L., S. S. Lim, R. D. Goldman, and G. G. Borisy. 1992. Steady state dynamics of intermediate filament networks. J. Cell Biol. 118:121–129.
  • Ward, J. M., M. Yoon, M. R. Anver, D. C. Haines, G. Kudo, F. J. Gonzalez, and S. Kimura. 2001. Hyalinosis and Ym1/Ym2 gene expression in the stomach and respiratory tract of 129S4/SvJae and wild-type and CYP1A2-null B6, 129 mice. Am. J. Pathol. 158:323–332.
  • Whelan, J. P., and J. F. McGinnis. 1988. Light-dependent subcellular movement of photoreceptor proteins. J. Neurosci. Res. 20:263–270.
  • Wolfrum, U. 1992. Cytoskeletal elements in arthropod sensilla and mammalian photoreceptors. Biol. Cell 76:373–381.
  • Worley, L. G., E. Fischbein, and J. E. Shapiro. 1953. The structure of ciliated epithelial cells as revealed by the electron microscope and in phase contrast. J. Morphol. 92:545–577.
  • Yang, J., X. Liu, G. Yue, M. Adamian, O. Bulgakov, and T. Li. 2002. Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J. Cell Biol. 159:431–440.
  • Yoon, K. H., M. Yoon, R. D. Moir, S. Khuon, F. W. Flitney, and R. D. Goldman. 2001. Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J. Cell Biol. 153:503–516.
  • Yoon, M., R. D. Moir, V. Prahlad, and R. D. Goldman. 1998. Motile properties of vimentin intermediate filament networks in living cells. J. Cell Biol. 143:147–157.
  • Zhang, L., and M. J. Sanderson. 2003. Oscillations in ciliary beat frequency and intracellular calcium concentration in rabbit tracheal epithelial cells induced by ATP. J. Physiol. 546:733–749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.