55
Views
85
CrossRef citations to date
0
Altmetric
Signal Transduction

Selective Activation of Mitogen-Activated Protein (MAP) Kinase Kinase 3 and p38α MAP Kinase Is Essential for Cyclic AMP-Dependent UCP1 Expression in Adipocytes

, , , , , , & show all
Pages 5466-5479 | Received 25 Nov 2004, Accepted 01 Apr 2005, Published online: 27 Mar 2023

REFERENCES

  • Altschuler, D. L., S. N. Peterson, M. C. Ostrowski, and E. G. Lapetina. 1995. Cyclic AMP-dependent activation of Rap1b. J. Biol. Chem. 270:10373–10376.
  • Bamshad, M., V. T. Aoki, M. G. Adkison, W. S. Warren, and T. J. Bartness. 1998. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275:R291–R299.
  • Bamshad, M., C. K. Song, and T. J. Bartness. 1999. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 276:R1569–R1578.
  • Bouillaud, F., D. Ricquier, J. Thibault, and J. Weissenbach. 1985. Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc. Natl. Acad. Sci. USA 82:445–448.
  • Buchsbaum, R. J., B. A. Connolly, and L. A. Feig. 2002. Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol. Cell. Biol. 22:4073–4085.
  • Cannon, B., and J. Nedergaard. 2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84:277–359.
  • Cao, W., K. W. Daniel, J. Robidoux, P. Puigserver, A. V. Medvedev, X. Bai, L. M. Floering, B. M. Spiegelman, and S. Collins. 2004. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24:3057–3067.
  • Cao, W., A. V. Medvedev, K. W. Daniel, and S. Collins. 2001. β-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein-1 (UCP1) gene requires p38 MAP kinase. J. Biol. Chem. 276:27077–27082.
  • Cassard-Doulcier, A. M., C. Gelly, F. Bouillaud, and D. Ricquier. 1998. A 211-bp enhancer of the rat uncoupling protein-1 (UCP-1) gene controls specific and regulated expression in brown adipose tissue. Biochem. J. 333:243–246.
  • Champigny, O., D. Ricquier, O. Blondel, R. M. Mayers, M. G. Briscoe, and B. R. Holloway. 1991. β3-Adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc. Natl. Acad. Sci. USA 88:10774–10777.
  • Collins, S., W. Cao, and J. Robidoux. 2004. Learning new tricks from old dogs: beta-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol. Endocrinol. 18:2123–2131.
  • Collins, S., K. W. Daniel, A. E. Petro, and R. S. Surwit. 1997. Strain-specific response to β3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 138:405–413.
  • Cousin, B., S. Cinti, M. Morrone, S. Raimbault, D. Ricquier, L. Penicaud, and L. Casteilla. 1992. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103:931–942.
  • Cuenda, A., P. Cohen, V. Buee-Scherrer, and M. Goedert. 1997. Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J. 16:295–305.
  • del Mar Gonzalez-Barroso, M., C. Pecqueur, C. Gelly, D. Sanchis, M. C. Alves-Guerra, F. Bouillaud, D. Ricquier, and A. M. Cassard-Doulcier. 2000. Transcriptional activation of the human ucp1 gene in a rodent cell line. Synergism of retinoids, isoproterenol, and thiazolidinedione is mediated by a multipartite response element. J. Biol. Chem. 275:31722–31732.
  • Del Mar Gonzalez-Barroso, M., D. Ricquier, and A. M. Cassard-Doulcier. 2000. The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obes. Rev. 1:61–72.
  • Derijard, B., J. Raingeaud, T. Barrett, I. H. Wu, J. Han, R. J. Ulevitch, and R. J. Davis. 1995. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267:682–685.
  • Enslen, H., J. Raingeaud, and R. J. Davis. 1998. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J. Biol. Chem. 273:1741–1748.
  • Franke, B., J. W. Akkerman, and J. L. Bos. 1997. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16:252–259.
  • Galitzky, J., M. Reverte, M. Portillo, C. Carpene, M. Lafontan, and M. Berlan. 1993. Coexistence of β1-,β2-, and β3-adrenoceptors in dog fat cells and their differential activation by catecholamines. Am. J. Physiol. 264:E403–E412.
  • Garrington, T. P., and G. L. Johnson. 1999. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11:211–218.
  • Garruti, G., and D. Ricquier. 1992. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int. J. Obesity 16:383–390.
  • Goedert, M., A. Cuenda, M. Craxton, R. Jakes, and P. Cohen. 1997. Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 16:3563–3571.
  • Gonzalez-Barroso, M., C. Fleury, F. Bouillaud, D. Nicholls, and E. Rial. 1998. The uncoupling protein UCP1 does not increase the proton conductance of the inner mitochondrial membrane by functioning as a fatty acid anion transporter. J. Biol. Chem. 273:15528–15532.
  • Gonzalez-Barroso, M. M., C. Fleury, I. Arechaga, P. Zaragoza, C. Levi-Meyrueis, S. Raimbault, D. Ricquier, F. Bouillaud, and E. Rial. 1996. Activation of the uncoupling protein by fatty acids is modulated by mutations in the C-terminal region of the protein. Eur. J. Biochem. 239:445–450.
  • Han, J., J. D. Lee, L. Bibbs, and R. J. Ulevitch. 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811.
  • Han, J., J. D. Lee, Y. Jiang, Z. Li, L. Feng, and R. J. Ulevitch. 1996. Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J. Biol. Chem. 271:2886–2891.
  • Herzig, S., F. Long, U. S. Jhala, S. Hedrick, R. Quinn, A. Bauer, D. Rudolph, G. Schutz, C. Yoon, P. Puigserver, B. Spiegelman, and M. Montminy. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183.
  • Himms-Hagen, J., A. Melnyk, M. C. Zingaretti, E. Ceresi, G. Barbatelli, and S. Cinti. 2000. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279:C670–C681.
  • Huang, C. C., J. L. You, M. Y. Wu, and K. S. Hsu. 2004. Rap1-induced p38 mitogen-activated protein kinase activation facilitates AMPA receptor trafficking via the GDI.Rab5 complex. Potential role in (S)-3,5-dihydroxyphenylglycene-induced long term depression. J. Biol. Chem. 279:12286–12292.
  • Jaeschke, A., M. P. Czech, and R. J. Davis. 2004. An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev. 18:1976–1980.
  • Jiang, Y., C. Chen, Z. Li, W. Guo, J. A. Gegner, S. Lin, and J. Han. 1996. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J. Biol. Chem. 271:17920–17926.
  • Kawasaki, H., G. M. Springett, N. Mochizuki, S. Toki, M. Nakaya, M. Matsuda, D. E. Housman, and A. M. Graybiel. 1998. A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279.
  • Kelkar, N., C. L. Standen, and R. J. Davis. 2005. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol. Cell. Biol. 25:2733–2743.
  • Klingenberg, M., K. S. Echtay, M. Bienengraeber, E. Winkler, and S. G. Huang. 1999. Structure-function relationship in UCP1. Int. J. Obes. 23(Suppl. 6):S24–S29.
  • Konrad, D., P. J. Bilan, Z. Nawaz, G. Sweeney, W. Niu, Z. Liu, C. N. Antonescu, A. Rudich, and A. Klip. 2002. Need for GLUT4 activation to reach maximum effect of insulin-mediated glucose uptake in brown adipocytes isolated from GLUT4myc-expressing mice. Diabetes 51:2719–2726.
  • Kortelainen, M.-L., G. Pelletier, D. Ricquier, and L. J. Bukowiecki. 1993. Immunohistochemical detection of human brown adipose tissue uncoupling protein in an autopsy series. J. Histochem. Cytochem. 41:759–764.
  • Kozak, U. C., J. Kopecky, J. Teisinger, S. Enerback, B. Boyer, and L. P. Kozak. 1994. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol. Cell. Biol. 14:59–67.
  • Lafontan, M., and M. Berlan. 1993. Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34:1057–1091.
  • Lee, C. M., D. Onesime, C. D. Reddy, N. Dhanasekaran, and E. P. Reddy. 2002. JLP: a scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors. Proc. Natl. Acad. Sci. USA 99:14189–14194.
  • Lee, J. C., J. T. Laydon, P. C. McDonnell, T. F. Gallagher, S. Kumar, D. Green, D. McNulty, M. J. Blumenthal, J. R. Heys, S. W. Landvatter, et al. 1994. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746.
  • Lever, J. D., R. T. Jung, J. O. Nnodim, P. J. Leslie, and D. Symons. 1986. Demonstration of a catecholaminergic innervation in human perirenal brown adipose tissue at various ages in the adult. Anat. Rec. 215:227–229.
  • Li, Z., Y. Jiang, R. J. Ulevitch, and J. Han. 1996. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun. 228:334–340.
  • Lin, A., A. Minden, H. Martinetto, F. X. Claret, C. Lange-Carter, F. Mercurio, G. L. Johnson, and M. Karin. 1995. Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268:286–290.
  • Miyamoto, N. G. 1987. Nucleotide sequence of the human beta-actin promoter 5′ flanking region. Nucleic Acids Res. 15:9095.
  • Moriguchi, T., N. Kuroyanagi, K. Yamaguchi, Y. Gotoh, K. Irie, T. Kano, K. Shirakabe, Y. Muro, H. Shibuya, K. Matsumoto, E. Nishida, and M. Hagiwara. 1996. A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J. Biol. Chem. 271:13675–13679.
  • Morrison, D. K., and R. J. Davis. 2003. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19:91–118.
  • Nedergaard, J., V. Golozoubova, A. Matthias, A. Asadi, A. Jacobsson, and B. Cannon. 2001. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim. Biophys. Acta 1504:82–106.
  • Nicholls, D. G., and R. M. Locke. 1984. Thermogenic mechanisms in brown fat. Physiol. Rev. 64:1–64.
  • Nnodim, J. O., and J. D. Lever. 1988. Neural and vascular provisions of rat interscapular brown adipose tissue. Am. J. Anat. 182:283–293.
  • Pecqueur, C., E. Couplan, F. Bouillaud, and D. Ricquier. 2001. Genetic and physiological analysis of the role of uncoupling proteins in human energy homeostasis. J. Mol. Med. 79:48–56.
  • Raingeaud, J., A. J. Whitmarsh, T. Barrett, B. Derijard, and R. J. Davis. 1996. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16:1247–1255.
  • Ricquier, D., and F. Bouillaud. 2000. Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J. Physiol. 529:3–10.
  • Ricquier, D., and F. Bouillaud. 2000. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345:161–179.
  • Robidoux, J., T. L. Martin, and S. Collins. 2004. Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu. Rev. Pharmacol. Toxicol. 44:297–323.
  • Rohlfs, E. M., K. W. Daniel, R. T. Premont, L. P. Kozak, and S. Collins. 1995. Regulation of the uncoupling protein gene (Ucp) by β1, β2, β3-adrenergic receptor subtypes in immortalized brown adipose cell lines. J. Biol. Chem. 270:10723–10732.
  • Ross, S. R., L. Choy, R. A. Graves, N. Fox, V. Solevjeva, S. Klaus, D. Ricquier, and B. M. Spiegelman. 1992. Hibernoma formation in transgenic mice and isolation of a brown adipocyte cell line expressing the uncoupling protein gene. Proc. Natl. Acad. Sci. USA 89:7561–7565.
  • Rothwell, N. J., and M. J. Stock. 1979. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35.
  • Sawada, Y., K. Nakamura, K. Doi, K. Takeda, K. Tobiume, M. Saitoh, K. Morita, I. Komuro, K. De Vos, M. Sheetz, and H. Ichijo. 2001. Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. J. Cell Sci. 114:1221–1227.
  • Shabalina, I. G., A. Jacobsson, B. Cannon, and J. Nedergaard. 2004. Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J. Biol. Chem. 279:38236–38248.
  • Stein, B., H. Brady, M. X. Yang, D. B. Young, and M. S. Barbosa. 1996. Cloning and characterization of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade. J. Biol. Chem. 271:11427–11433.
  • Tanaka, N., M. Kamanaka, H. Enslen, C. Dong, M. Wysk, R. J. Davis, and R. A. Flavell. 2002. Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis. EMBO Rep. 3:785–791.
  • Thomas, S. A., and R. D. Palmiter. 1997. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 397:94–97
  • van Liefde, I., A. van Witzenberg, and G. Vauquelin. 1992. Multiple beta adrenergic receptor subclasses mediate the I-isoproteronol-induced lipolytic response in rat adipocytes. J. Pharmacol. Exp. Ther. 262:552–558.
  • Vossler, M. R., H. Yao, R. D. York, M. G. Pan, C. S. Rim, and P. J. Stork. 1997. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89:73–82.
  • Wang, X. S., K. Diener, C. L. Manthey, S. Wang, B. Rosenzweig, J. Bray, J. Delaney, C. N. Cole, P. Y. Chan-Hui, N. Mantlo, H. S. Lichenstein, M. Zukowski, and Z. Yao. 1997. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J. Biol. Chem. 272:23668–23674.
  • Wang, Y., B. Su, V. P. Sah, J. H. Brown, J. Han, and K. R. Chien. 1998. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J. Biol. Chem. 273:5423–5426.
  • Wu, Z., P. Puigserver, U. Andersson, C. Zhang, G. Adelmant, V. Mootha, A. Troy, S. Cinti, B. Lowell, R. C. Scarpulla, and B. M. Spiegelman. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124.
  • Wysk, M., D. D. Yang, H. T. Lu, R. A. Flavell, and R. J. Davis. 1999. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc. Natl. Acad. Sci. USA 96:3763–3768.
  • Yao, Z., K. Diener, X. S. Wang, M. Zukowski, G. Matsumoto, G. Zhou, R. Mo, T. Sasaki, H. Nishina, C. C. Hui, T. H. Tan, J. P. Woodgett, and J. M. Penninger. 1997. Activation of stress-activated protein kinases/c-Jun N-terminal protein kinases (SAPKs/JNKs) by a novel mitogen-activated protein kinase kinase. J. Biol. Chem. 272:32378–32383.
  • Yasuda, J., A. J. Whitmarsh, J. Cavanagh, M. Sharma, and R. J. Davis. 1999. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol. 19:7245–7254.
  • Young, J. B., E. Saville, N. J. Rothwell, M. J. Stock, and L. Landsberg. 1982. Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J. Clin. Investig. 69:1061–1071.
  • Yu, J., D. Bian, C. Mahanivong, R. K. Cheng, W. Zhou, and S. Huang. 2004. p38 mitogen-activated protein kinase regulation of endothelial cell migration depends on urokinase plasminogen activator expression. J. Biol. Chem. 279:50446–50454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.