16
Views
29
CrossRef citations to date
0
Altmetric
Signal Transduction

Inhibition of TFII-I-Dependent Cell Cycle Regulation by p53

, , , , , , , & show all
Pages 10940-10952 | Received 21 Apr 2005, Accepted 21 Sep 2005, Published online: 27 Mar 2023

REFERENCES

  • Agami, R., and R. Bernards. 2002. Convergence of mitogenic and DNA damage signaling in the G1 phase of the cell cycle. Cancer Lett. 177:111–118.
  • Agami, R., and R. Bernards. 2000. Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102:55–66.
  • Albanese, C., J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and R. G. Pestell. 1995. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270:23589–23597.
  • Amson, R. B., M. Nemani, J. P. Roperch, D. Israeli, L. Bougueleret, I. Le Gall, M. Medhioub, G. Linares-Cruz, F. Lethrosne, P. Pasturaud, L. Piouffre, S. Prieur, L. Susini, V. Alvaro, P. Millasseau, C. Guidicelli, H. Bui, C. Massart, L. Cazes, F. Dufour, H. Bruzzoni-Giovanelli, H. Owadi, C. Hennion, G. Charpak, A. Telerman, and et al. 1996. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the Drosophila seven in absentia gene. Proc. Natl. Acad. Sci. USA 93:3953–3957.
  • Bartek, J., and J. Lukas. 2001. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol. 13:738–747.
  • Ben-Neriah, Y. 2002. Regulatory functions of ubiquitination in the immune system. Nat. Immunol. 3:20–26.
  • Blagosklonny, M. V., and A. B. Pardee. 2002. The restriction point of the cell cycle. Cell Cycle 1:103–110.
  • Brooks, C. L., and W. Gu. 2004. Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle 3:895–899.
  • Brown, J. R., E. Nigh, R. J. Lee, H. Ye, M. A. Thompson, F. Saudou, R. G. Pestell, and M. E. Greenberg. 1998. Fos family members induce cell cycle entry by activating cyclin D1. Mol. Cell. Biol. 18:5609–5619.
  • Catic, A., C. Collins, G. M. Church, and H. L. Ploegh. 2004. Preferred in vivo ubiquitination sites. Bioinformatics 20:3302–3307.
  • Cheriyath, V., Z. P. Desgranges, and A. L. Roy. 2002. c-Src dependent transcriptional activation of TFII-I. J. Biol. Chem.
  • Cheriyath, V., C. D. Novina, and A. L. Roy. 1998. TFII-I regulates Vβ promoter activity through an initiator element. Mol. Cell. Biol. 18:4444–4454.
  • Cheriyath, V., and A. L. Roy. 2000. Alternatively spliced isoforms of TFII-I. Complex formation, nuclear translocation, and differential gene regulation. J. Biol. Chem. 275:26300–26308.
  • Cheriyath, V., and A. L. Roy. 2001. Structure-function analysis of TFII-I. Roles of the N-terminal end, basic region, and I-repeats. J. Biol. Chem. 276:8377–8383.
  • D'Amico, M., K. Wu, M. Fu, M. Rao, C. Albanese, R. G. Russell, H. Lian, D. Bregman, M. A. White, and R. G. Pestell. 2004. The inhibitor of cyclin-dependent kinase 4a/alternative reading frame (INK4a/ARF) locus encoded proteins p16INK4a and p19ARF repress cyclin D1 transcription through distinct cis elements. Cancer Res. 64:4122–4130.
  • Deane, N. G., M. A. Parker, R. Aramandla, L. Diehl, W. J. Lee, M. K. Washington, L. B. Nanney, Y. Shyr, and R. D. Beauchamp. 2001. Hepatocellular carcinoma results from chronic cyclin D1 overexpression in transgenic mice. Cancer Res. 61:5389–5395.
  • Dornan, D., I. Wertz, H. Shimizu, D. Arnott, G. D. Frantz, P. Dowd, K. O'Rourke, H. Koeppen, and V. M. Dixit. 2004. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92.
  • Duan, L., A. L. Reddi, A. Ghosh, M. Dimri, and H. Band. 2004. The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling. Immunity 21:7–17.
  • Eto, I. 2000. Molecular cloning and sequence analysis of the promoter region of mouse cyclin D1 gene: implication in phorbol ester-induced tumour promotion. Cell Prolif. 33:167–187.
  • Fu, M., C. Wang, Z. Li, T. Sakamaki, and R. G. Pestell. 2004. Minireview: cyclin D1: normal and abnormal functions. Endocrinology 145:5439–5447.
  • Germani, A., A. Prabel, S. Mourah, M. P. Podgorniak, A. Di Carlo, R. Ehrlich, S. Gisselbrecht, N. Varin-Blank, F. Calvo, and H. Bruzzoni-Giovanelli. 2003. SIAH-1 interacts with CtIP and promotes its degradation by the proteasome pathway. Oncogene 22:8845–8851.
  • Gill, G. 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms. Genes Dev. 18:2046–2059.
  • Girnita, L., A. Girnita, and O. Larsson. 2003. Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc. Natl. Acad. Sci. USA 100:8247–8252.
  • Grueneberg, D. A., R. W. Henry, A. Brauer, C. D. Novina, V. Cheriyath, A. L. Roy, and M. Gilman. 1997. A multifunctional DNA-binding protein that promotes the formation of serum response factor/homeodomain complexes: identity to TFII-I. Genes Dev. 11:2482–2493.
  • Han, E. K., S. C. Ng, N. Arber, M. Begemann, and I. B. Weinstein. 1999. Roles of cyclin D1 and related genes in growth inhibition, senescence and apoptosis. Apoptosis 4:213–219.
  • Haupt, Y., A. I. Robles, C. Prives, and V. Rotter. 2002. Deconstruction of p53 functions and regulation. Oncogene 21:8223–8231.
  • Hay, R. T. 2005. SUMO: a history of modification. Mol. Cell 18:1–12.
  • Hipfner, D. R., and S. M. Cohen. 2004. Connecting proliferation and apoptosis in development and disease. Nat. Rev. Mol. Cell Biol. 5:805–815.
  • Hulit, J., C. Wang, Z. Li, C. Albanese, M. Rao, D. Di Vizio, S. Shah, S. W. Byers, R. Mahmood, L. H. Augenlicht, R. Russell, and R. G. Pestell. 2004. Cyclin D1 genetic heterozygosity regulates colonic epithelial cell differentiation and tumor number in ApcMin mice. Mol. Cell. Biol. 24:7598–7611.
  • Iliakis, G., Y. Wang, J. Guan, and H. Wang. 2003. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22:5834–5847.
  • Jackson, P. K., A. G. Eldridge, E. Freed, L. Furstenthal, J. Y. Hsu, B. K. Kaiser, and J. D. Reimann. 2000. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10:429–439.
  • Jiang, W., R. Sordella, G. C. Chen, S. Hakre, A. L. Roy, and J. Settleman. 2005. An FF domain-dependent protein interaction mediates a signaling pathway for growth factor-induced gene expression. Mol. Cell 17:23–35.
  • Jin, Y., S. X. Zeng, H. Lee, and H. Lu. 2004. MDM2 mediates p300/CREB-binding protein-associated factor ubiquitination and degradation. J. Biol. Chem. 279:20035–20043.
  • Kastan, M. B., and J. Bartek. 2004. Cell-cycle checkpoints and cancer. Nature 432:316–323.
  • Kim, D. W., V. Cheriyath, A. L. Roy, and B. H. Cochran. 1998. TFII-I enhances activation of the c-fos promoter through interactions with upstream elements. Mol. Cell. Biol. 18:3310–3320.
  • Kim, D. W., and B. H. Cochran. 2000. Extracellular signal-regulated kinase binds to TFII-I and regulates its activation of the c-fos promoter. Mol. Cell. Biol. 20:1140–1148.
  • Kim, M., T. Tezuka, K. Tanaka, and T. Yamamoto. 2004. Cbl-c suppresses v-Src-induced transformation through ubiquitin-dependent protein degradation. Oncogene 23:7903–7904.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Lindemann, D., E. Patriquin, S. Feng, and R. C. Mulligan. 1997. Versatile retrovirus vector systems for regulated gene expression in vitro and in vivo. Mol. Med. 3:466–476.
  • Lois, C., E. J. Hong, S. Pease, E. J. Brown, and D. Baltimore. 2002. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Manzano-Winkler, B., C. D. Novina, and A. L. Roy. 1996. TFII is required for transcription of the naturally TATA-less but initiator-containing Vbeta promoter. J. Biol. Chem. 271:12076–12081.
  • Massague, J. 2004. G1 cell-cycle control and cancer. Nature 432:298–306.
  • Murray, A. W. 2004. Recycling the cell cycle: cyclins revisited. Cell 116:221–234.
  • Nelsen, C. J., R. Kuriyama, B. Hirsch, V. C. Negron, W. L. Lingle, M. M. Goggin, M. W. Stanley, and J. H. Albrecht. 2004. Short-term cyclin D1 overexpression induces centrosome amplification, mitotic spindle abnormalities, and aneuploidy. J. Biol. Chem.
  • Novina, C. D., V. Cheriyath, and A. L. Roy. 1998. Regulation of TFII-I activity by phosphorylation. J. Biol. Chem. 273:33443–33448.
  • Novina, C. D., S. Kumar, U. Bajpai, V. Cheriyath, K. Zhang, S. Pillai, H. H. Wortis, and A. L. Roy. 1999. Regulation of nuclear localization and transcriptional activity of TFII-I by Bruton's tyrosine kinase. Mol. Cell. Biol. 19:5014–5024.
  • Pagano, M. 1997. Cell cycle regulation by the ubiquitin pathway. FASEB J. 11:1067–1075.
  • Parker, R., T. Phan, P. Baumeister, B. Roy, V. Cheriyath, A. L. Roy, and A. S. Lee. 2001. Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol. Cell. Biol. 21:3220–3233.
  • Philipp, A., A. Schneider, I. Vasrik, K. Finke, Y. Xiong, D. Beach, K. Alitalo, and M. Eilers. 1994. Repression of cyclin D1: a novel function of MYC. Mol. Cell. Biol. 14:4032–4043.
  • Pickart, C. M. 2004. Back to the future with ubiquitin. Cell 116:181–190.
  • Roy, A. L. 2001. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. Gene 274:1–13.
  • Roy, A. L., H. Du, P. D. Gregor, C. D. Novina, E. Martinez, and R. G. Roeder. 1997. Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J. 16:7091–7104.
  • Roy, A. L., M. Meisterernst, P. Pognonec, and R. G. Roeder. 1991. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature 354:245–248.
  • Rubinson, D. A., C. P. Dillon, A. V. Kwiatkowski, C. Sievers, L. Yang, J. Kopinja, D. L. Rooney, M. M. Ihrig, M. T. McManus, F. B. Gertler, M. L. Scott, and L. Van Parijs. 2003. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33:401–406.
  • Shenoy, S. K., P. H. McDonald, T. A. Kohout, and R. J. Lefkowitz. 2001. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313.
  • Slansky, J. E., Y. Li, W. G. Kaelin, and P. J. Farnham. 1993. A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol. Cell. Biol. 13:1610–1618.
  • Sun, L., and Z. J. Chen. 2004. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16:119–126.
  • Thome, K. C., A. Radfar, and N. Rosenberg. 1997. Mutation of Tp53 contributes to the malignant phenotype of Abelson virus-transformed lymphoid cells. J. Virol. 71:8149–8156.
  • Unnikrishnan, I., A. Radfar, J. Jenab-Wolcott, and N. Rosenberg. 1999. p53 mediates apoptotic crisis in primary Abelson virus-transformed pre-B cells. Mol. Cell. Biol. 19:4825–4831.
  • Vodermaier, H. C. 2004. APC/C and SCF: controlling each other and the cell cycle. Curr. Biol. 14:R787–R796.
  • Wang, T. C., R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt. 1994. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.
  • Wang, Y. K., L. A. Perez-Jurado, and U. Francke. 1998. A mouse single-copy gene, Gtf2i, the homolog of human GTF2I, that is duplicated in the Williams-Beuren syndrome deletion region. Genomics 48:163–170.
  • Yang, W., and S. Desiderio. 1997. BAP-135, a target for Bruton's tyrosine kinase in response to B cell receptor engagement. Proc. Natl. Acad. Sci. USA 94:604–609.
  • Yu, Q., Y. Geng, and P. Sicinski. 2001. Specific protection against breast cancers by cyclin D1 ablation. Nature 411:1017–1021.
  • Zhao, R., K. Gish, M. Murphy, Y. Yin, D. Notterman, W. H. Hoffman, E. Tom, D. H. Mack, and A. J. Levine. 2000. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14:981–993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.