32
Views
88
CrossRef citations to date
0
Altmetric
Signal Transduction

Human Fas-Associated Factor 1, Interacting with Ubiquitinated Proteins and Valosin-Containing Protein, Is Involved in the Ubiquitin-Proteasome Pathway

, , , &
Pages 2511-2524 | Received 11 Jul 2004, Accepted 10 Nov 2004, Published online: 27 Mar 2023

REFERENCES

  • Bays, N. W., and R. Y. Hampton. 2002. Cdc48-ufd1-npl4: stuck in the middle with Ub. Curr. Biol. 12:R366–R371.
  • Becker, K., P. Schneider, K. Hofmann, C. Mattmann, and J. Tschopp. 1997. Interaction of Fas(Apo-1/CD95) with proteins implicated in the ubiquitination pathway. FEBS Lett. 412:102–106.
  • Buchberger, A., M. J. Howard, M. Proctor, and M. Bycroft. 2001. The UBX domain: a widespread ubiquitin-like module. J. Mol. Biol. 307:17–24.
  • Chen, L., and K. Madura. 2002. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22:4902–4913.
  • Chu, K., X. Niu, and L. T. A. Williams. 1995. Fas-associated protein factor, FAF1, potentiates Fas-mediated apoptosis. Proc. Natl. Acad. Sci. USA 92:11894–11898.
  • Dai, R. M., and C. C. H. Li. 2001. Valosin-containing protein is a multiubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat. Cell Biol. 3:740–744.
  • Dai, R. M., E. Chen, D. L. Longo, C. M. Gorbe, and C. C. H. Li. 1998. Involvement of valosin-containing protein, an ATPase copurified with IκBα and 26S proteasome, in ubiquitin-proteasome mediated degradation of IκBα. J. Biol. Chem. 273:3562–3573.
  • Dantuma, N. P., K. Lindsten, R. Glas, M. Jellen, and M. G. Masucci. 2000. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome dependent proteolysis in living cells. Nat. Biotechnol. 18:538–542.
  • Doss-Pepe, E. W., E. W. Stenroos, W. G. Johnson, and K. Madura. 2003. Ataxin-3 interactions with Rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol. Cell. Biol. 23:6469–6483.
  • Elsasser, S., D. Chandler-Militello, B. Muller, J. Hanna, and D. Finley. 2004. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279:26817–26822.
  • Finley, D. 2001. Signal transduction. An alternative to destruction. Nature 412:285–286.
  • Frohlich, T., W. Risau, and I. Flamme. 1998. Characterization of novel nuclear targeting and apoptosis-inducing domains in FAS associated factor 1. J. Cell Sci. 111:2353–2363.
  • Funakoshi, M., T. Sasaki, T. Nishimoto, and H. Kobayashi. 2002. Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99:745–750.
  • Ghislain, M., R. Dohmen, F. Levy, and A. Varshavsky. 1996. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 15:4884–4899.
  • Hershko, A., and A. Ciechanover. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–430.
  • Hofmann, K., and P. Bucher. 1996. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21:172–173.
  • Johnson, E. S., P. C. M. Ma, I. M. Ota, and A. Varshavsky. 1995. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270:17442–17456.
  • Kim, H. J., E. J. Song, Y. S. Lee, E. Kim, and K. J. Lee. Human Fas-associated factor 1 interacts with heat shock protein 70 and negatively regulates chaperone activity. J. Biol. Chem., in press.
  • Koegl, M., T. Hoppe, S. Schlenker, H. Ulrich, T. Mayer, and S. A. Jentsch. 1999. Novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644.
  • Kondo, H., C. Rabouille, R. Newman, T. P. Levine, D. Pappin, P. Freemont, and G. Warren. 1997. p47 is a cofactor for p97-mediated membrane fusion. Nature 388:75–78.
  • Lindsten, K., F. M. de Vrij, L. G. Verhoef, D. F. Fischer, F. W. van Leeuwen, E. M. Hol, M. G. Masucci, and N. P. Dantuma. 2002. Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J. Cell Biol. 157:417–427.
  • Lord, J. M., A. Ceriotti, and L. M. Roberts. 2002. ER dislocation: Cdc48p/p97 gets into the AAAct. Curr. Biol. 12:R182–R184.
  • McBride, W. H., K. S. Iwamoto, R. Syljuasen, M. Pervan, and F. Pajonk. 2003. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 22:5755–5773.
  • Meyer, H. H., J. G. Shorter, J. Seemann, D. Pappin, and G. Warren. 2000. Complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19:2181–2192.
  • Meyer, H. H., Y. Wang, and G. Warren. 2002. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21:5645–5652.
  • Mitsiades, N., C. S. Mitsiades, V. Poulaki, D. Chauhan, G. Fanourakis, X. Gu, C. Bailey, M. Joseph, T. A. Libermann, S. P. Treon, N. C. Munshi, P. G. Richardson, T. Hideshima, and K. C. Anderson. 2002. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc. Natl. Acad. Sci. USA 99:14374–14379.
  • Moir, D., S. Stewart, B. Osmond, and D. Bostein. 1982. Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties and pseudoreversion studies. Genetics 100:547–564.
  • Mueller, T. D., and J. Feigon. 2002. Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. J. Mol. Biol. 319:1243–1255.
  • Orlowski, R. Z. 1999. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ. 6:303–313.
  • Park, M. Y., H. D. Jang, S. Y. Lee, K. J. Lee, and E. Kim. 2004. Fas-associated factor-1 inhibits nuclear factor-κB (NF-κB) activity by interfering with nuclear translocation of the RelA (p65) subunit of NF-κB. J. Biol. Chem. 279:2544–2549.
  • Peng, J., D. Schwartz, J. E. Elias, C. C. Thoreen, D. Cheng, G. Marsischky, J. Roelofs, D. Finley, and S. P. Gygi. 2003. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 8:921–926.
  • Pickart, C. M. 2001. Ubiquitin enters the new millennium. Mol. Cell 8:499–504.
  • Raasi, S., and C. M. Pickart. 2003. Rad23 UBA domains inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine48-linked polyubiquitin chains. J. Biol. Chem. 278:8951–8959.
  • Rabouille, C., H. Kondo, R. Newman, N. Hui, P. Freemont, and G. Warren. 1998. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92:603–610.
  • Ryu, S. W., S. K. Chae, K. J. Lee, and E. Kim. 1999. Identification and characterization of human Fas associated factor 1, hFAF1. Biochem. Biophys. Res. Commun. 262:388–394.
  • Ryu, S. W., S. J. Lee, M. Y. Park, J. I. Jun, Y. K. Jung, and E. Kim. 2003. Fas-associated factor 1, FAF1, is a member of Fas death-inducing signaling complex. J. Biol. Chem. 278:24003–24010.
  • Vadlamudi, R. K., I. Joung, J. L. Strominger, and J. Shin. 1996. p62, a phosphotyrosine-independent ligand of the SH2 domain of p56 lck, belongs to a new class of ubiquitin-binding proteins. J. Biol. Chem. 271:20235–20237.
  • Verma, R., R. Oania, J. Graumann, and R. J. Deshaies. 2004. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118:99–110.
  • Wilkinson, C. R., M. Seeger, R. Hartmann-Petersen, M. Stone, M. Wallace, C. Semple, and C. Gordon. 2001. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat. Cell Biol. 3:939–943.
  • Yang, Y., and X. Yu. 2003. Regulation of apoptosis: the ubiquitous way. FASEB J. 17:790–799.
  • Yaron, A., A. Hatzubai, M. Davis, I. Lavon, S. Amit, A. M. Manning, J. S. Adhersen, M. Mann, F. Mercurio, and Y. Ben-Neriah. 1998. Identification of the receptor component if the IκBα-ubiquitin ligase. Nature 396:590–594.
  • Ye, Y., H. H. Meyer, and T. A. Rapoport. 2001. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656.
  • Yuan, X., A. Shaw, X. Zhang, H. Kondo, J. Lally, P. S. Freemont, and S. Matthews. 2001. Solution structure and interaction surface of the C-terminal domain from p47: a major p97-cofactor involved in SNARE disassembly. J. Mol. Biol. 311:255–263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.