11
Views
110
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Imprinted Nesp55 Influences Behavioral Reactivity to Novel Environments

, , , , , , , & show all
Pages 3019-3026 | Received 29 Oct 2004, Accepted 18 Jan 2005, Published online: 27 Mar 2023

REFERENCES

  • Banbury Conference on Genetic Background in Mice. 1997. Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19:755–759.
  • Bauer, R., R. Ischia, J. Marksteiner, I. Kapeller, and R. Fischer-Colbrie. 1999. Localization of neuroendocrine secretory protein 55 messenger RNA in the rat brain. Neuroscience 91:685–694.
  • Bauer, R., C. Weiss, J. Marksteiner, A. Doblinger, R. Fischer-Colbrie, and A. Laslop. 1999. The new chromogranin-like protein NESP55 is preferentially localized in adrenaline-synthesizing cells of the bovine and rat adrenal medulla. Neurosci. Lett. 263:13–16.
  • Berridge, C. W., and B. D. Waterhouse. 2003. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42:33–84.
  • Brambilla, R., N. Gnesutta, L. Minichiello, G. White, A. J. Roylance, C. E. Herron, M. Ramsey, D. P. Wolfer, V. Cestari, C. Rossi-Arnaud, S. G. Grant, P. F. Chapman, H. P. Lipp, E. Sturani, and R. Klein. 1997. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390:281–286.
  • Bunting, M., K. E. Bernstein, J. M. Greer, M. R. Capecchi, and K. R. Thomas. 1999. Targeting genes for self-excision in the germ line. Genes Dev. 13:1524–1528.
  • Cattanach, B. M., and M. Kirk. 1985. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–498.
  • Cattanach, B. M., J. Peters, S. Ball, and C. Rasberry. 2000. Two imprinted gene mutations: three phenotypes. Hum. Mol. Genet. 9:2263–2273.
  • Cochran, W., and G. Cox. 1957. Experimental designs, second ed. Wiley, New York, N.Y.
  • Cole, B. J., T. W. Robbins, and B. J. Everitt. 1988. Lesions of the dorsal noradrenergic bundle simultaneously enhance and reduce responsivity to novelty in a food preference test. Brain Res. 472:325–349.
  • Curley, J. P., S. Barton, A. Surani, and E. B. Keverne. 2004. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc. R. Soc. Lond. B 271:1303–1309.
  • Delaval, K., and R. Feil. 2004. Epigenetic regulation of mammalian genomic imprinting. Curr. Opin. Genet. Dev. 14:188–195.
  • Fischer-Colbrie, R., S. Eder, P. Lovisetti-Scamihorn, A. Becker, and A. Laslop. 2002. Neuroendocrine secretory protein 55: a novel marker for the constitutive secretory pathway. Ann. N. Y. Acad. Sci. 971:317–322.
  • Gerlai, R. 1996. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype. Trends Neurosci. 19:177–181.
  • Giese, K. P., E. Friedman, J. B. Telliez, N. B. Fedorov, M. Wines, L. A. Feig, and A. J. Silva. 2001. Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology 41:791–800.
  • Grailhe, R., C. Waeber, S. C. Dulawa, J. P. Hornung, X. Zhuang, D. Brunner, M. A. Geyer, and R. Hen. 1999. Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Neuron 22:581–591.
  • Hayward, B. E., A. Barlier, M. Korbonits, A. B. Grossman, P. Jacquet, A. Enjalbert, and D. T. Bonthron. 2001. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J. Clin. Investig. 107:R31–R36.
  • Ischia, R., P. Lovisetti-Scamihorn, R. Hogue-Angeletti, M. Wolkersdorfer, H. Winkler, and R. Fischer-Colbrie. 1997. Molecular cloning and characterization of NESP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. J. Biol. Chem. 272:11657–11662.
  • Isles, A. R., M. J. Baum, D. Ma, A. Szeto, E. B. Keverne, and N. D. Allen. 2002. A possible role for imprinted genes in inbreeding avoidance and dispersal from the natal area in mice. Proc. R. Soc. Lond. B 269:665–670.
  • Isles, A. R., T. Humby, E. Walters, and L. S. Wilkinson. 2004. Common genetic effects on variation in impulsivity and activity in mice. J. Neurosci. 24:6733–6740.
  • Isles, A. R., and L. S. Wilkinson. 2000. Imprinted genes, cognition and behaviour. Trends Cogn. Sci. 4:309–318.
  • Jacobs, B. L., and E. C. Azmitia. 1992. Structure and function of the brain serotonin system. Physiol. Rev. 72:165–229.
  • Jiang, Y. H., D. Armstrong, U. Albrecht, C. M. Atkins, J. L. Noebels, G. Eichele, J. D. Sweatt, and A. L. Beaudet. 1998. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21:799–811.
  • Kehlenbach, R. H., J. Matthey, and W. B. Huttner. 1994. XL alpha s is a new type of G protein. Nature 372:804–809.
  • Kelsey, G., D. Bodle, H. J. Miller, C. V. Beechey, C. Coombes, J. Peters, and C. M. Williamson. 1999. Identification of imprinted loci by methylation-sensitive representational difference analysis: application to mouse distal chromosome 2. Genomics 62:129–138.
  • Lefebvre, L., S. Viville, S. C. Barton, F. Ishino, E. B. Keverne, and M. A. Surani. 1998. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat. Genet. 20:163–169.
  • Li, J. Y., P. Lovisetti-Scamihorn, R. Fischer-Colbrie, H. Winkler, and A. Dahlstrom. 2002. Distribution and intraneuronal trafficking of a novel member of the chromogranin family, NESP55, in the rat peripheral nervous system. Neuroscience 110:731–745.
  • Li, L., E. B. Keverne, S. A. Aparicio, F. Ishino, S. C. Barton, and M. A. Surani. 1999. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284:330–333.
  • Liu, J., S. Yu, D. Litman, W. Chen, and L. S. Weinstein. 2000. Identification of a methylation imprint mark within the mouse Gnas locus. Mol. Cell. Biol. 20:5808–5817.
  • Lovisetti-Scamihorn, P., R. Fischer-Colbrie, B. Leitner, G. Scherzer, and H. Winkler. 1999. Relative amounts and molecular forms of NESP55 in various bovine tissues. Brain Res. 829:99–106.
  • Miura, K., T. Kishino, E. Li, H. Webber, P. Dikkes, G. L. Holmes, and J. Wagstaff. 2002. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol. Dis. 9:149–159.
  • Moore, T., and D. Haig. 1991. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7:45–49.
  • Muscatelli, F., D. N. Abrous, A. Massacrier, I. Boccaccio, M. Le Moal, P. Cau, and H. Cremer. 2000. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum. Mol. Genet. 9:3101–3110.
  • Peters, J., S. F. Wroe, C. A. Wells, H. J. Miller, D. Bodle, C. V. Beechey, C. M. Williamson, and G. Kelsey. 1999. A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2. Proc. Natl. Acad. Sci. USA 96:3830–3835.
  • Plagge, A., E. Gordon, W. Dean, R. Boiani, S. Cinti, J. Peters, and G. Kelsey. 2004. The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat. Genet. 36:818–826.
  • Pudovkina, O. L., Y. Kawahara, J. de Vries, and B. H. Westerink. 2001. The release of noradrenaline in the locus coeruleus and prefrontal cortex studied with dual-probe microdialysis. Brain Res. 906:38–45.
  • Reik, W., M. Constancia, A. Fowden, N. Anderson, W. Dean, A. Ferguson-Smith, B. Tycko, and C. Sibley. 2003. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J. Physiol. 547:35–44.
  • Reik, W., and J. Walter. 2001. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2:21–32.
  • Sara, S. J., C. Dyon-Laurent, and A. Herve. 1995. Novelty seeking behavior in the rat is dependent upon the integrity of the noradrenergic system. Brain Res. Cogn. Brain Res. 2:181–187.
  • Sara, S. J., A. Vankov, and A. Herve. 1994. Locus coeruleus-evoked responses in behaving rats: a clue to the role of noradrenaline in memory. Brain Res. Bull. 35:457–465.
  • Skelton, K. H., M. J. Owens, and C. B. Nemeroff. 2000. The neurobiology of urocortin. Regul. Pept. 93:85–92.
  • Srebro, B., and S. A. Lorens. 1975. Behavioral effects of selective midbrain raphe lesions in the rat. Brain Res. 89:303–325.
  • Trivers, R., and A. Burt. 1999. Kinship and genomic imprinting, p. 1–21. In R. Ohlsson (ed.), Genomic imprinting—an interdisciplinary approach. Springer, Berlin, Germany.
  • Tycko, B., and I. M. Morison. 2002. Physiological functions of imprinted genes. J. Cell Physiol. 192:245–258.
  • Vankov, A., A. Herve-Minvielle, and S. J. Sara. 1995. Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur. J. Neurosci. 7:1180–1187.
  • Wilkins, J. F., and D. Haig. 2003. What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4:359–368.
  • Williamson, C. M., S. T. Ball, W. T. Nottingham, J. A. Skinner, A. Plagge, M. D. Turner, N. Powles, T. Hough, D. Papworth, W. D. Fraser, M. Maconochie, and J. Peters. 2004. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat. Genet. 36:894–899.
  • Wolfer, D. P., W. E. Crusio, and H. P. Lipp. 2002. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 25:336–340.
  • Wroe, S. F., G. Kelsey, J. A. Skinner, D. Bodle, S. T. Ball, C. V. Beechey, J. Peters, and C. M. Williamson. 2000. An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc. Natl. Acad. Sci. USA 97:3342–3346.
  • Yu, S., O. Gavrilova, H. Chen, R. Lee, J. Liu, K. Pacak, A. F. Parlow, M. J. Quon, M. L. Reitman, and L. S. Weinstein. 2000. Paternal versus maternal transmission of a stimulatory G-protein alpha subunit knockout produces opposite effects on energy metabolism. J. Clin. Investig. 105:615–623.
  • Yu, S., D. Yu, E. Lee, M. Eckhaus, R. Lee, Z. Corria, D. Accili, H. Westphal, and L. S. Weinstein. 1998. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the gsα gene. Proc. Natl. Acad. Sci. USA 95:8715–8720.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.