6
Views
34
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Matrix Metalloproteinases Are Not Essential for Aggrecan Turnover during Normal Skeletal Growth and Development

, , , , , , & show all
Pages 3388-3399 | Received 22 Oct 2004, Accepted 07 Jan 2005, Published online: 27 Mar 2023

REFERENCES

  • Alini, M., Y. Matsui, G. R. Dodge, and A. R. Poole. 1992. The extracellular matrix of cartilage in the growth plate before and during calcification: changes in composition and degradation of type II collagen. Calcif. Tissue Int. 50:327–335.
  • Argraves, W. S., P. J. McKeown-Longo, and P. F. Goetinck. 1981. Absence of proteoglycan core protein in the cartilage mutant nanomelia. FEBS Lett. 131:265–268.
  • Bayliss, M. T., S. Hutton, J. Hayward, and R. A. Maciewicz. 2001. Distribution of aggrecanase (ADAMts 4/5) cleavage products in normal and osteoarthritic human articular cartilage: the influence of age, topography and zone of tissue. Osteoarthritis Cartilage 9:553–560.
  • Boyde, A., and I. M. Shapiro. 1980. Energy dispersive X-ray elemental analysis of isolated epiphyseal growth plate chondrocyte fragments. Histochemistry 69:85–94.
  • Buckwalter, J. A. 1983. Proteoglycan structure in calcifying cartilage. Clin. Orthop. 172:207–232.
  • Buckwalter, J. A., L. C. Rosenberg, and R. Ungar. 1987. Changes in proteoglycan aggregates during cartilage mineralization. Calcif. Tissue Int. 41:228–236.
  • Byers, S., B. Caterson, J. J. Hopwood, and B. K. Foster. 1992. Immunolocation analysis of glycosaminoglycans in the human growth plate. J. Histochem. Cytochem. 40:275–282.
  • Campo, R. D., and J. E. Romano. 1986. Changes in cartilage proteoglycans associated with calcification. Calcif. Tissue Int. 39:175–184.
  • Dennis, J. E., D. A. Carrino, N. B. Schwartz, and A. I. Caplan. 1990. Ultrastructural characterization of embryonic chick cartilage proteoglycan core protein and the mapping of a monoclonal antibody epitope. J. Biol. Chem. 265:12098–12103.
  • Farndale, R. W., C. A. Sayers, and A. J. Barrett. 1982. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9:247–248.
  • Flannery, C. R., C. B. Little, C. E. Hughes, and B. Caterson. 1998. Expression and activity of articular cartilage hyaluronidases. Biochem. Biophys. Res. Commun. 251:824–829.
  • Fosang, A. J., K. Last, P. Gardiner, D. C. Jackson, and L. Brown. 1995. Development of a cleavage-site-specific monoclonal antibody for detecting metalloproteinase-derived aggrecan fragments: detection of fragments in human synovial fluids. Biochem. J. 310:337–343.
  • Fosang, A. J., K. Last, V. Knäuper, P. J. Neame, G. Murphy, T. E. Hardingham, H. Tschesche, and J. A. Hamilton. 1993. Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain. Biochem. J. 295:273–276.
  • Fosang, A. J., K. Last, and R. A. Maciewicz. 1996. Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J. Clin. Investig. 98:2292–2299.
  • Fosang, A. J., K. Last, H. Stanton, D. B. Weeks, I. K. Campbell, T. E. Hardingham, and R. M. Hembry. 2000. Generation and novel distribution of matrix metalloproteinase-derived aggrecan fragments in porcine cartilage explants. J. Biol. Chem. 275:33027–33037.
  • Fosang, A. J., P. J. Neame, K. Last, T. E. Hardingham, G. Murphy, and J. A. Hamilton. 1992. The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J. Biol. Chem. 267:19470–19474.
  • Franzen, A., D. Heinegard, S. Reiland, and S. E. Olsson. 1982. Proteoglycans and calcification of cartilage in the femoral head epiphysis of the immature rat. J. Bone Joint Surg. Am. 64:558–566.
  • Gack, S., R. Vallon, J. Schmidt, A. Grigoriadis, J. Tuckermann, J. Schenkel, H. Weiher, E. F. Wagner, and P. Angel. 1995. Expression of interstitial collagenase during skeletal development of the mouse is restricted to osteoblast-like cells and hypertrophic chondrocytes. Cell Growth Differ. 6:759–767.
  • Glasson, S. S., R. Askew, B. Sheppard, B. A. Carito, T. Blanchet, H. L. Ma, C. R. Flannery, K. Kanki, E. Wang, D. Peluso, Z. Yang, M. K. Majumdar, and E. A. Morris. 2004. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum. 50:2547–2558.
  • Glasson, S. S., R. Askew, B. Sheppard, B. Carito, T. Blanchet, H. Ma, C. R. Flannery, D. Peluso, K. Kanki, Z. Yang, M. K. Majumdar, and E. A. Morris. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature, in press.
  • Handley, C. J., M. Tuck Mok, M. Z. Ilic, C. Adcocks, D. J. Buttle, and H. C. Robinson. 2001. Cathepsin D cleaves aggrecan at unique sites within the interglobular domain and chondroitin sulfate attachment regions that are also cleaved when cartilage is maintained at acid pH. Matrix Biol. 20:543–553.
  • Hargest, T. E., C. V. Gay, H. Schraer, and A. J. Wasserman. 1985. Vertical distribution of elements in cells and matrix of epiphyseal growth plate cartilage determined by quantitative electron probe analysis. J. Histochem. Cytochem. 33:275–286.
  • Hogan, B. L., R. Beddington, F. Costantini, and E. Lacy. 1994. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hou, P., T. Troen, M. C. Ovejero, T. Kirkegaard, T. L. Andersen, I. Byrjalsen, M. Ferreras, T. Sato, S. D. Shapiro, N. T. Foged, and J. M. Delaisse. 2004. Matrix metalloproteinase-12 (MMP-12) in osteoclasts: new lesson on the involvement of MMPs in bone resorption. Bone 34:37–47.
  • Howell, D. S., and L. Carlson. 1968. Alterations in the composition of growth cartilage septa during calcification studied by microscopic x-ray elemental analysis. Exp. Cell Res. 51:185–195.
  • Hughes, C., B. Caterson, R. J. White, P. J. Roughley, and J. S. Mort. 1992. Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. J. Biol. Chem. 267:16011–16014.
  • Hunter, G. K. 1991. Role of proteoglycan in the provisional calcification of cartilage. A review and reinterpretation. Clin. Orthop. 262:256–280.
  • Hunter, G. K., and C. A. Weinert. 1996. Inhibition of proteoglycan biosynthesis decreases the calcification of chondrocyte cultures. Connect. Tissue Res. 35:379–384.
  • Hunziker, E. B., R. K. Schenk, and L. M. Cruz-Orive. 1987. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J. Bone Joint Surg. Am. 69:162–173.
  • Ilic, M. Z., H. C. Robinson, and C. J. Handley. 1998. Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan. J. Biol. Chem. 273:17451–17458.
  • Inada, M., Y. Wang, M. H. Byrne, M. U. Rahman, C. Miyaura, C. Lopez-Otin, and S. M. Krane. 2004. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc. Natl. Acad. Sci. USA 101:17192–17197.
  • Kimata, K., H.-J. Barrach, K. S. Brown, and J. P. Pennypacker. 1981. Absence of proteoglycan core protein in cartilage from the cmd/cmd (cartilage matrix deficiency) mouse. J. Biol. Chem. 256:6961–6968.
  • Koklitis, P. A., G. Murphy, C. Sutton, and S. Angal. 1991. Purification of recombinant human prostromelysin. Studies on heat activation to give high-Mr and low Mr active forms, and a comparison of recombinant with natural stromelysin activities. Biochem. J. 276:217–221.
  • Krueger, R. C., Jr., K. Kurima, and N. B. Schwartz. 1999. Completion of the mouse aggrecan gene structure and identification of the defect in the cmd-Bc mouse as a near complete deletion of the murine aggrecan gene. Mamm. Genome 10:1119–1125.
  • Lark, M. W., E. K. Bayne, J. Flanagan, C. F. Harper, L. A. Hoerrner, N. I. Hutchinson, I. I. Singer, S. A. Donatelli, J. R. Weidner, H. R. Williams, R. A. Mumford, and L. S. Lohmander. 1997. Aggrecan degradation in human cartilage. Evidence for both metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Investig. 100:93–106.
  • Lee, E. R., L. Lamplugh, M. A. Davoli, A. Beauchemin, K. Chan, J. S. Mort, and C. P. Leblond. 2001. Enzymes active in the areas undergoing cartilage resorption during the development of the secondary ossification center in the tibiae of rats ages 0-21 days: I. Two groups of proteinases cleave the core protein of aggrecan. Dev. Dyn. 222:52–70.
  • Lee, E. R., L. Lamplugh, C. P. Leblond, S. Mordier, M. C. Magny, and J. S. Mort. 1998. Immunolocalization of the cleavage of the aggrecan core protein at the Asn341-Phe342 bond, as an indicator of the location of the metalloproteinases active in the lysis of the rat growth plate. Anat. Rec. 252:117–132.
  • Li, H., N. B. Schwartz, and B. M. Vertel. 1993. cDNA cloning of chick cartilage chondroitin sulfate (aggrecan) core protein and identification of a stop codon in the aggrecan gene associated with the chondrodystrophy, nanomelia. J. Biol. Chem. 268:23504–23511.
  • Little, C., S. Smith, P. Ghosh, and C. Bellenger. 1997. Histomorphological and immunohistochemical evaluation of joint changes in a model of osteoarthritis induced by lateral meniscectomy in sheep. J. Rheumatol. 24:2199–2209.
  • Little, C. B., L. Mittaz, D. Belluoccio, F. M. Rogerson, I. K. Campbell, C. T. Meeker, J. F. Bateman, M. A. Pritchard, and A. J. Fosang. ADAMTS-1 knockout mice do not exhibit abnormalities in aggrecan turnover in vitro or in vivo. Arthritis Rheum., in press.
  • Lohmander, S., and A. Hjerpe. 1975. Proteoglycans of mineralizing rib and epiphyseal cartilage. Biochim. Biophys. Acta 404:93–109.
  • Makihira, S., W. Yan, H. Murakami, M. Furukawa, T. Kawai, H. Nikawa, E. Yoshida, T. Hamada, Y. Okada, and Y. Kato. 2003. Thyroid hormone enhances aggrecanase-2/ADAM-TS5 expression and proteoglycan degradation in growth plate cartilage. Endocrinology 144:2480–2488.
  • Matsui, Y., M. Alini, C. Webber, and A. R. Poole. 1991. Characterization of aggregating proteoglycans from the proliferative, maturing, hypertrophic, and calcifying zones of the cartilaginous physis. J. Bone Joint Surg. Am. 73:1064–1074.
  • Mattot, V., M. B. Raes, P. Henriet, Y. Eeckhout, D. Stehelin, B. Vandenbunder, and X. Desbiens. 1995. Expression of interstitial collagenase is restricted to skeletal tissue during mouse embryogenesis. J. Cell Sci. 108:529–535.
  • Mercuri, F. A., K. J. Doege, E. C. Arner, M. A. Pratta, K. Last, and A. J. Fosang. 1999. Recombinant human aggrecan G1-G2 exhibits native binding properties and substrate specificity for matrix metalloproteinases and aggrecanase. J. Biol. Chem. 274:32387–32395.
  • Mercuri, F. A., R. A. Maciewicz, J. Tart, K. Last, and A. J. Fosang. 2000. Mutations in the interglobular domain of aggrecan alter matrix metalloproteinase and aggrecanase cleavage patterns. Evidence that matrix metalloproteinase cleavage interferes with aggrecanase activity. J. Biol. Chem. 275:33038–33045.
  • Mort, J. S., M. C. Magny, and E. R. Lee. 1998. Cathepsin B: an alternative protease for the generation of an aggrecan 'metalloproteinase' cleavage neoepitope. Biochem. J. 335:491–494.
  • Mwale, F., E. Tchetina, C. W. Wu, and A. R. Poole. 2002. The assembly and remodeling of the extracellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan. J. Bone Miner. Res. 17:275–283.
  • Nakase, T., M. Kaneko, T. Tomita, A. Myoui, K. Ariga, K. Sugamoto, Y. Uchiyama, T. Ochi, and H. Yoshikawa. 2000. Immunohistochemical detection of cathepsin D, K, and L in the process of endochondral ossification in the human. Histochem. Cell Biol. 114:21–27.
  • Oshita, H., J. D. Sandy, K. Suzuki, A. Akaike, Y. Bai, T. Sasaki, and K. Shimizu. 2004. Mature bovine articular cartilage contains abundant aggrecan that is C-terminally truncated at Ala719-Ala720, a site which is readily cleaved by m-calpain. Biochem. J. 382:253–259.
  • Pavasant, P., T. Shizari, and C. B. Underhill. 1996. Hyaluronan contributes to the enlargement of hypertrophic lacunae in the growth plate. J. Cell Sci. 109:327–334.
  • Plaas, A. H. K., and J. D. Sandy. 1993. A cartilage explant system for studies on aggrecan structure, biosynthesis and catabolism in discrete zones of the mammalian growth plate. Matrix 13:135–147.
  • Plaas, A. H. K., L. West, R. J. Midura, and V. C. Hascall. 2001. Disaccharide composition of hyaluronan and chondroitin/dermatan sulfate, p. 117–128. In R. V. Iozzo (ed.), Proteoglycan protocols. Humana Press, Totowa, N.J.
  • Poole, A. R., I. Pidoux, and L. Rosenberg. 1982. Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J. Cell Biol. 92:249–260.
  • Potts, W., J. Bowyer, H. Jones, D. Tucker, A. J. Freemont, A. Millest, C. Martin, W. Vernon, D. Neerunjun, G. Slynn, F. Harper, and R. Maciewicz. 2004. Cathepsin L-deficient mice exhibit abnormal skin and bone development and show increased resistance to osteoporosis following ovariectomy. Int. J. Exp. Pathol. 85:85–96.
  • Rittenhouse, E., L. C. Dunn, J. Cookingham, C. Calo, M. Spiegelman, G. B. Dooher, and D. Bennett. 1978. Cartilage matrix deficiency (cmd): a new autosomal recessive lethal mutation in the mouse. J. Embryol. Exp. Morphol. 43:71–84.
  • Roberts, C. R., P. J. Roughley, and J. S. Mort. 1989. Degradation of human proteoglycan aggregate induced by hydrogen peroxide. Protein fragmentation, amino acid modification and hyaluronic acid cleavage. Biochem. J. 259:805–811.
  • Sandy, J. D., and C. Verscharen. 2001. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem. J. 358:615–626.
  • Scherft, J. P., and S. Moskalewski. 1984. The amount of proteoglycans in cartilage matrix and the onset of mineralization. Metab. Bone Dis. Relat. Res. 5:195–203.
  • Shaklee, P. N., and H. E. Conrad. 1985. Structural changes in the large proteoglycan in differentiating chondrocytes from the chick embryo tibiotarsus. J. Biol. Chem. 260:16064–16067.
  • Shimizu, K., T. Hamamoto, T. Hamakubo, W. J. Lee, K. Suzuki, Y. Nakagawa, T. Murachi, and T. Yamamuro. 1991. Immunohistochemical and biochemical demonstration of calcium-dependent cysteine proteinase (calpain) in calcifying cartilage of rats. J. Orthop. Res. 9:26–36.
  • Sims, N. A., P. Clement-Lacroix, F. Da Ponte, Y. Bouali, N. Binart, R. Moriggl, V. Goffin, K. Coschigano, M. Gaillard-Kelly, J. Kopchick, R. Baron, and P. A. Kelly. 2000. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J. Clin. Investig. 106:1095–1103.
  • Singer, I. I., S. Scott, D. W. Kawka, E. K. Bayne, J. R. Weidner, H. R. Williams, R. A. Mumford, M. W. Lark, J. McDonnell, A. J. Christen, V. L. Moore, J. S. Mudgett, and D. M. Visco. 1997. Aggrecanase and metalloproteinase-specific aggrecan neo-epitopes are induced in the articular cartilage of mice with collagen II- induced arthritis. Osteoarthritis Cartilage 5:407–418.
  • Soderstrom, M., H. Salminen, V. Glumoff, H. Kirschke, H. Aro, and E. Vuorio. 1999. Cathepsin expression during skeletal development. Biochim. Biophys. Acta 1446:35–46.
  • Stanton, H., F. M. Rogerson, C. East, S. B. Golub, K. M. Lawlor, C. T. Meeker, C. B. Little, K. Last, P. J. Farmer, I. K. Campbell, A. M. Fourie, and A. J. Fosang. ADAMTS-5 is the major aggrecanase in mouse cartilage, in vivo and in vitro. Nature, in press.
  • Stickens, D., D. J. Behonick, N. Ortega, B. Heyer, B. Hartenstein, Y. Yu, A. J. Fosang, M. Schorpp-Kistner, P. Angel, and Z. Werb. 2004. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131:5883–5895.
  • Sztrolovics, R., M. Alini, P. J. Roughley, and J. S. Mort. 1997. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem. J. 326:235–241.
  • Sztrolovics, R., R. J. White, P. J. Roughley, and J. S. Mort. 2002. The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism. Biochem. J. 362:465–472.
  • Sztrolovics, R., A. D. Recklies, P. J. Roughley, and J. S. Mort. 2002. Hyaluronate degradation as an alternative mechanism for proteoglycan release from cartilage during interleukin-1beta-stimulated catabolism. Biochem. J. 362:473–479.
  • Thyberg, J., S. Lohmander, and U. Friberg. 1973. Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J. Ultrastruct. Res. 45:407–427.
  • Tortorella, M. D., M. Pratta, R. Q. Liu, J. Austin, O. H. Ross, I. Abbaszade, T. Burn, and E. Arner. 2000. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J. Biol. Chem. 275:18566–18573.
  • Tselepis, C., A. P. Kwan, D. Thornton, and J. Sheehan. 2000. The biochemical characterization of aggrecan from normal and tibial-dyschondroplastic chicken growth-plate cartilage. Biochem. J. 351:517–525.
  • van Meurs, J., P. van Lent, A. Holthuysen, D. Lambrou, E. Bayne, I. Singer, and W. van den Berg. 1999. Active matrix metalloproteinases are present in cartilage during immune complex-mediated arthritis: a pivotal role for stromelysin-1 in cartilage destruction. J. Immunol. 163:5633–5639.
  • van Meurs, J., P. van Lent, R. Stoop, A. Holthuysen, I. Singer, E. Bayne, J. Mudgett, R. Poole, C. Billinghurst, P. van der Kraan, P. Buma, and W. van den Berg. 1999. Cleavage of aggrecan at the Asn341-Phe342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arthritis Rheum. 42:2074–2084.
  • van Meurs, J. B., P. L. van Lent, A. E. Holthuysen, I. I. Singer, E. K. Bayne, and W. B. van den Berg. 1999. Kinetics of aggrecanase- and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum. 42:1128–1139.
  • van Meurs, J. B., P. L. van Lent, I. I. Singer, E. K. Bayne, F. A. van de Loo, and W. B. van den Berg. 1998. Interleukin-1 receptor antagonist prevents expression of the metalloproteinase-generated neoepitope VDIPEN in antigen-induced arthritis. Arthritis Rheum. 41:647–656.
  • van Meurs, J. B., P. L. van Lent, A. A. van de Loo, A. E. Holthuysen, E. K. Bayne, I. I. Singer, and W. B. van den Berg. 1999. Increased vulnerability of postarthritic cartilage to a second arthritic insult: accelerated MMP activity in a flare up of arthritis. Ann. Rheum. Dis. 58:350–356.
  • Vu, T. H., J. M. Shipley, G. Bergers, J. E. Berger, J. A. Helms, D. Hanahan, S. D. Shapiro, R. M. Senior, and Z. Werb. 1998. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422.
  • Ward, R. V., R. M. Hembry, J. J. Reynolds, and G. Murphy. 1991. The purification of tissue inhibitor of metalloproteinases-2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1. Biochem. J. 278:179–187.
  • Wikstrom, B., B. Engfeldt, D. Heinegard, and A. Hjerpe. 1985. Proteoglycans and glycosaminoglycans in cartilage from the brachymorphic (bm/bm) mouse. Coll. Relat. Res. 5:193–204.
  • Wikstrom, B., M. E. Wallace, A. Hjerpe, and B. Engfeldt. 1987. Chubby: a new autosomal recessive skeletal mutation producing dwarfism in the mouse. J. Hered. 78:8–14.
  • Yasuda, T., K. Shimizu, Y. Nakagawa, S. Yamamoto, H. Niibayashi, and T. Yamamuro. 1995. m-calpain in rat growth plate chondrocyte cultures: its involvement in the matrix mineralization process. Dev. Biol. 170:159–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.