4
Views
24
CrossRef citations to date
0
Altmetric
Gene Expression

Human RNA Polymerase II Elongation in Slow Motion: Role of the TFIIF RAP74 α1 Helix in Nucleoside Triphosphate-Driven Translocation

, &
Pages 3583-3595 | Received 01 Dec 2004, Accepted 31 Dec 2004, Published online: 27 Mar 2023

REFERENCES

  • Arnold, J. J., and C. E. Cameron. 2004. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+. Biochemistry 43:5126–5137.
  • Arnold, J. J., D. W. Gohara, and C. E. Cameron. 2004. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+. Biochemistry 43:5138–5148.
  • Bengal, E., O. Flores, A. Krauskopf, D. Reinberg, and Y. Aloni. 1991. Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. Mol. Cell. Biol. 11:1195–1206.
  • Conaway, J. W., and R. C. Conaway. 1989. A multisubunit transcription factor essential for accurate initiation by RNA polymerase II. J. Biol. Chem. 264:2357–2362.
  • Cramer, P., D. A. Bushnell, and R. D. Kornberg. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863–1876.
  • Dunlap, C. A., and M. D. Tsai. 2002. Use of 2-aminopurine and tryptophan fluorescence as probes in kinetic analyses of DNA polymerase Beta. Biochemistry 41:11226–11235.
  • Flores, O., H. Lu, M. Killeen, J. Greenblatt, Z. F. Burton, and D. Reinberg. 1991. The small subunit of transcription factor IIF recruits RNA polymerase II into the preinitiation complex. Proc. Natl. Acad. Sci. USA 88:9999–10003.
  • Flores, O., E. Maldonado, Z. Burton, J. Greenblatt, and D. Reinberg. 1988. Factors involved in specific transcription by mammalian RNA polymerase II. RNA polymerase II-associating protein 30 is an essential component of transcription factor IIF. J. Biol. Chem. 263:10812–10816.
  • Foster, J. E., S. F. Holmes, and D. A. Erie. 2001. Allosteric binding of nucleotide triphosphates to RNA polymerase regulates transcription elongation. Cell 106:243–252.
  • Funk, J. D., Y. A. Nedialkov, D. Xu, and Z. F. Burton. 2002. A key role for the alpha 1 helix of human RAP74 in the initiation and elongation of RNA chains. J. Biol. Chem. 277:46998–47003.
  • Gaiser, F., S. Tan, and T. J. Richmond. 2000. Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 A resolution. J. Mol. Biol. 302:1119–1127.
  • Gnatt, A. 2002. Elongation by RNA polymerase II: structure-function relationship. Biochim. Biophys. Acta 1577:175–190.
  • Gnatt, A. L., P. Cramer, J. Fu, D. A. Bushnell, and R. D. Kornberg. 2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292:1876–1882.
  • Gong, X. Q., Y. A. Nedialkov, and Z. F. Burton. 2004. Alpha-amanitin blocks translocation by human RNA polymerase II. J. Biol. Chem. 279:27422–27427.
  • Gu, W., and D. Reines. 1995. Variation in the size of nascent RNA cleavage products as a function of transcript length and elongation competence. J. Biol. Chem. 270:30441–30447.
  • Guo, H., and D. H. Price. 1993. Mechanism of DmS-II-mediated pause suppression by Drosophila RNA polymerase II. J. Biol. Chem. 268:18762–18770.
  • Holmes, S. F., and D. A. Erie. 2003. Downstream DNA sequence effects on transcription elongation. Allosteric binding of nucleotide triphosphates facilitates translocation via a ratchet motion. J. Biol. Chem. 278:35597–35608.
  • Izban, M. G., and D. S. Luse. 1992. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267:13647–13655.
  • Izban, M. G., and D. S. Luse. 1993. The increment of SII-facilitated transcript cleavage varies dramatically between elongation competent and incompetent RNA polymerase II ternary complexes. J. Biol. Chem. 268:12874–12885.
  • Izban, M. G., and D. S. Luse. 1992. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′ → 5′ direction in the presence of elongation factor SII. Genes Dev. 6:1342–1356.
  • Johnson, K. A. 1995. Rapid quench kinetic analysis of polymerases, adenosine triphosphatases, and enzyme intermediates. Methods Enzymol. 249:38–61.
  • Johnson, K. A. 1992. Transient-state kinetic analysis of enzyme reaction pathways. Enzymes 20:1–61.
  • Kettenberger, H., K. J. Armache, and P. Cramer. 2003. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114:347–357.
  • Kettenberger, H., K. J. Armache, and P. Cramer. 2004. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16:955–965.
  • Kuzmic, P. 1996. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237:260–273.
  • Lei, L., D. Ren, and Z. F. Burton. 1999. The RAP74 subunit of human transcription factor IIF has similar roles in initiation and elongation. Mol. Cell. Biol. 19:8372–8382.
  • Nedialkov, Y. A., X. Q. Gong, S. L. Hovde, Y. Yamaguchi, H. Handa, J. H. Geiger, H. Yan, and Z. F. Burton. 2003. NTP-driven translocation by human RNA polymerase II. J. Biol. Chem. 278:18303–18312.
  • Nedialkov, Y. A., X. Q. Gong, Y. Yamaguchi, H. Handa, and Z. F. Burton. 2003. Assay of transient state kinetics of RNA polymerase II elongation. Methods Enzymol. 371:252–262.
  • Neuman, K. C., E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block. 2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115:437–447.
  • Palangat, M., and R. Landick. 2001. Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II. J. Mol. Biol. 311:265–282.
  • Ren, D., L. Lel, and Z. F. Burton. 1999. A region within the RAP74 subunit of human transcription factor IIF is critical for initiation but dispensable for complex assembly. Mol. Cell. Biol. 19:7377–7387.
  • Renner, D. B., Y. Yamaguchi, T. Wada, H. Handa, and D. H. Price. 2001. A highly purified RNA polymerase II elongation control system. J. Biol. Chem. 276:42601–42609.
  • Shaevitz, J. W., E. A. Abbondanzieri, R. Landick, and S. M. Block. 2003. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426:684–687.
  • Shapiro, D. J., P. A. Sharp, W. W. Wahli, and M. J. Keller. 1988. A high-efficiency HeLa cell nuclear transcription extract. DNA 7:47–55.
  • Sopta, M., R. W. Carthew, and J. Greenblatt. 1985. Isolation of three proteins that bind to mammalian RNA polymerase II. J. Biol. Chem. 260:10353–10360.
  • Sosunov, V., E. Sosunova, A. Mustaev, I. Bass, V. Nikiforov, and A. Goldfarb. 2003. Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J. 22:2234–2244.
  • Tan, S., T. Aso, R. C. Conaway, and J. W. Conaway. 1994. Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J. Biol. Chem. 269:25684–25691.
  • Tan, S., R. C. Conaway, and J. W. Conaway. 1995. Dissection of transcription factor TFIIF functional domains required for initiation and elongation. Proc. Natl. Acad. Sci. USA 92:6042–6046.
  • Vassylyev, D. G., S. Sekine, O. Laptenko, J. Lee, M. N. Vassylyeva, S. Borukhov, and S. Yokoyama. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417:712–719.
  • Wang, B. Q., C. F. Kostrub, A. Finkelstein, and Z. F. Burton. 1993. Production of human RAP30 and RAP74 in bacterial cells. Protein Expression Purif. 4:207–214.
  • Wang, B. Q., L. Lei, and Z. F. Burton. 1994. Importance of codon preference for production of human RAP74 and reconstitution of the RAP30/74 complex. Protein Expression Purif. 5:476–485.
  • Westover, K. D., D. A. Bushnell, and R. D. Kornberg. 2004. Structural basis of transcription; nucleotide selection by rotation in the RNA polymerase II active center. Cell 119:481–489.
  • Zhang, C., and Z. F. Burton. 2004. Transcription factors IIF and IIS and nucleoside triphosphate substrates as dynamic probes of the human RNA polymerase II mechanism. J. Mol. Biol. 342:1085–1099.
  • Zhang, C., H. Yan, and Z. F. Burton. 2003. Combinatorial control of human RNA polymerase II (RNAP II) pausing and transcript cleavage by transcription factor IIF, hepatitis δ antigen, and stimulatory factor II. J. Biol. Chem. 278:50101–50111.
  • Zhang, G., E. A. Campbell, L. Minakhin, C. Richter, K. Severinov, and S. A. Darst. 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98:811–824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.