17
Views
14
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

The Distal Sequence Element of the Selenocysteine tRNA Gene Is a Tissue-Dependent Enhancer Essential for Mouse Embryogenesis

, , , , , , & show all
Pages 3658-3669 | Received 23 Aug 2004, Accepted 28 Jan 2005, Published online: 27 Mar 2023

REFERENCES

  • Adachi, K., H. Saito, T. Tanaka, and T. Oka. 1998. Molecular cloning and characterization of the murine staf cDNA encoding a transcription activating factor for the selenocysteine tRNA gene in mouse mammary gland. J. Biol. Chem. 273:8598–8606.
  • Bianco, A. C., D. Salvatore, B. Gereben, M. J. Berry, and P. R. Larsen. 2002. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrinol. Rev. 23:38–89.
  • Bosl, M. R., M. F. Seldin, S. Nishimura, and M. Taketo. 1995. Cloning, structural analysis and mapping of the mouse selenocysteine tRNA([Ser]Sec) gene (Trsp). Mol. Gen. Genet. 248:247–252.
  • Bosl, M. R., K. Takaku, M. Oshima, S. Nishimura, and M. M. Taketo. 1997. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc. Natl. Acad. Sci. USA 94:5531–5534.
  • Carbon, P., and A. Krol. 1991. Transcription of the Xenopus laevis selenocysteine tRNA(Ser)Sec gene: a system that combines an internal B box and upstream elements also found in U6 snRNA genes. EMBO J. 10:599–606.
  • Carlson, B. A., S. V. Novoselov, E. Kumaraswamy, B. J. Lee, M. R. Anver, V. N. Gladyshev, and D. L. Hatfield. 2004. Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J. Biol. Chem. 279:8011–8017.
  • Cheng, W. H., Y. S. Ho, D. A. Ross, B. A. Valentine, G. F. Combs, and X. G. Lei. 1997. Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J. Nutr. 127:1445–1450.
  • Copeland, P. R. 2003. Regulation of gene expression by stop codon recoding: selenocysteine. Gene 312:17–25.
  • Driscoll, D. M., and P. R. Copeland. 2003. Mechanism and regulation of selenoprotein synthesis. Annu. Rev. Nutr. 23:17–40.
  • Esworthy, R. S., R. Aranda, M. G. Martin, J. H. Doroshow, S. W. Binder, and F. F. Chu. 2001. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 281:G848–G855.
  • Hatfield, D. L., and V. N. Gladyshev. 2002. How selenium has altered our understanding of the genetic code. Mol. Cell. Biol. 22:3565–3576.
  • Hayes, J. D., J. U. Flanagan, and I. R. Jowsey. 2005. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45:51–88.
  • Hayes, J. D., and M. McMahon. 2001. Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett. 174:103–113.
  • Hernandez, N. 2001. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J. Biol. Chem. 276:26733–26736.
  • Hill, K. E., P. R. Lyons, and R. F. Burk. 1992. Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem. Biophys. Res. Commun. 185:260–263.
  • Hill, K. E., J. Zhou, W. J. McMahan, A. K. Motley, J. F. Atkins, R. F. Gesteland, and R. F. Burk. 2003. Deletion of selenoprotein P alters distribution of selenium in the mouse. J. Biol. Chem. 278:13640–13646.
  • Imai, H., F. Hirao, T. Sakamoto, K. Sekine, Y. Mizukura, M. Saito, T. Kitamoto, M. Hayasaka, K. Hanaoka, and Y. Nakagawa. 2003. Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem. Biophys. Res. Commun. 305:278–286.
  • Immenschuh, S., and G. Ramadori. 2000. Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem. Pharmacol. 60:1121–1128.
  • Ishii, T., K. Itoh, E. Ruiz, D. S. Leake, H. Unoki, M. Yamamoto, and G. E. Mann. 2004. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ. Res. 94:609–616.
  • Itoh, K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, and Y. Nabeshima. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:313–322.
  • Itoh, K., M. Mochizuki, Y. Ishii, T. Ishii, T. Shibata, Y. Kawamoto, V. Kelly, K. Sekizawa, K. Uchida, and M. Yamamoto. 2004. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Δ(12,14)-prostaglandin j(2). Mol. Cell. Biol. 24:36–45.
  • Jeong, D., T. S. Kim, Y. W. Chung, B. J. Lee, and I. Y. Kim. 2002. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett. 517:225–228.
  • Kelly, V. P., P. J. Sherratt, D. H. Crouch, and J. D. Hayes. 2002. Novel homodimeric and heterodimeric rat gamma-hydroxybutyrate synthases that associate with the Golgi apparatus define a distinct subclass of aldo-keto reductase 7 family proteins. Biochem. J. 366:847–861.
  • Kryukov, G. V., R. A. Kumar, A. Koc, Z. Sun, and V. N. Gladyshev. 2002. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA 99:4245–4250.
  • Kryukov, G. V., S. Castellano, S. V. Novoselov, A. V. Lobanov, O. Zehtab, R. Guigo, and V. N. Gladyshev. 2003. Characterization of mammalian selenoproteomes. Science 300:1439–1443.
  • Lambert, A., A. Lescure, and D. Gautheret. 2002. A survey of metazoan selenocysteine insertion sequences. Biochimie 84:953–959.
  • Matsui, M., M. Oshima, H. Oshima, K. Takaku, T. Maruyama, J. Yodoi, and M. M. Taketo. 1996. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev. Biol. 178:179–185.
  • McLeod, R., E. M. Ellis, J. R. Arthur, G. E. Neal, D. J. Judah, M. M. Manson, and J. D. Hayes. 1997. Protection conferred by selenium deficiency against aflatoxin B1 in the rat is associated with the hepatic expression of an aldo-keto reductase and a glutathione S-transferase subunit that metabolize the mycotoxin. Cancer Res. 57:4257–4266.
  • Moriarty, P. M., C. C. Reddy, and L. E. Maquat. 1998. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol. 18:2932–2939.
  • Mostert, V., K. E. Hill, and R. F. Burk. 2003. Loss of activity of the selenoenzyme thioredoxin reductase causes induction of hepatic heme oxygenase-1. FEBS Lett. 541:85–88.
  • Moustafa, M. E., B. A. Carlson, M. A. El-Saadani, G. V. Kryukov, Q. A. Sun, J. W. Harney, K. E. Hill, G. F. Combs, L. Feigenbaum, D. B. Mansur, R. F. Burk, M. J. Berry, A. M. Diamond, B. J. Lee, V. N. Gladyshev, and D. L. Hatfield. 2001. Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA. Mol. Cell. Biol. 21:3840–3852.
  • Mustacich, D., and G. Powis. 2000. Thioredoxin reductase. Biochem. J. 346:1–8.
  • Myslinski, E., A. Krol, and P. Carbon. 1998. ZNF76 and ZNF143 are two human homologs of the transcriptional activator Staf. J. Biol. Chem. 273:21998–22006.
  • Myslinski, E., A. Krol, and P. Carbon. 1992. Optimal tRNA((Ser)Sec) gene activity requires an upstream SPH motif. Nucleic Acids Res. 20:203–209.
  • Nguyen, T., P. J. Sherratt, and C. B. Pickett. 2003. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu. Rev. Pharmacol. Toxicol. 43:233–260.
  • Otterbein, L. E., M. P. Soares, K. Yamashita, and F. H. Bach. 2003. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24:449–455.
  • Powis, G., D. Mustacich, and A. Coon. 2000. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic. Biol. Med. 29:312–322.
  • Schaub, M., E. Myslinski, C. Schuster, A. Krol, and P. Carbon. 1997. Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III. EMBO J. 16:173–181.
  • Schaub, M., A. Krol, and P. Carbon. 2000. Structural organization of Staf-DNA complexes. Nucleic Acids Res. 28:2114–2121.
  • Schneider, M. J., S. N. Fiering, S. E. Pallud, A. F. Parlow, D. L. St. Germain, and V. A. Galton. 2001. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 15:2137–2148.
  • Schuster, C., E. Myslinski, A. Krol, and P. Carbon. 1995. Staf, a novel zinc finger protein that activates the RNA polymerase III promoter of the selenocysteine tRNA gene. EMBO J. 14:3777–3787.
  • Sun, X., X. Li, P. M. Moriarty, T. Henics, J. P. LaDuca, and L. E. Maquat. 2001. Nonsense-mediated decay of mRNA for the selenoprotein phospholipid hydroperoxide glutathione peroxidase is detectable in cultured cells but masked or inhibited in rat tissues. Mol. Biol. Cell 12:1009–1017.
  • Takebe, G., J. Yarimizu, Y. Saito, T. Hayashi, H. Nakamura, J. Yodoi, S. Nagasawa, and K. Takahashi. 2002. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J. Biol. Chem. 277:41254–41258.
  • Weiss Sachdev, S., and R. A. Sunde. 2001. Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver. Biochem. J. 357:851–858.
  • Wingler, K., M. Bocher, L. Flohe, H. Kollmus, and R. Brigelius-Flohe. 1999. mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur. J. Biochem. 259:149–157.
  • Yant, L. J., Q. Ran, L. Rao, H. Van Remmen, T. Shibatani, J. G. Belter, L. Motta, A. Richardson, and T. A. Prolla. 2003. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34:496–502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.