29
Views
49
CrossRef citations to date
0
Altmetric
Article

Global Analysis of the Relationship between the Binding of the Bas1p Transcription Factor and Meiosis-Specific Double-Strand DNA Breaks in Saccharomyces cerevisiae

, , , , &
Pages 1014-1027 | Received 02 Jun 2005, Accepted 03 Nov 2005, Published online: 27 Mar 2023

REFERENCES

  • Abdullah, M. F., and R. H. Borts. 2001. Meiotic recombination frequencies are affected by nutritional states in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 98:14524–14529.
  • Arndt, K., and G. R. Fink. 1986. GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5′ TGACTC 3′ sequences. Proc. Natl. Acad. Sci. USA 83:8516–8520.
  • Arndt, K. T., C. A. Styles, and G. R. Fink. 1987. Multiple global regulators control HIS4 transcription in yeast. Science 246:874–880.
  • Baudat, F., and A. Nicolas. 1997. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl. Acad. Sci. USA 94:5213–5218.
  • Ben-Aroya, S., P. A. Mieczkowski, T. D. Petes, and M. Kupiec. 2004. The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae. Mol. Cell 15:47–63.
  • Birdsell, J. A. 2002. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol. Biol. Evol. 19:1181–1197.
  • Blat, Y., and N. Kleckner. 1999. Cohesins bind to preferential sites along yeast chromosome III with differential regulation along arms versus the centric region. Cell 98:249–259.
  • Blat, Y., R. U. Protacio, N. Hunter, and N. Kleckner. 2002. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:791–802.
  • Borde, V., A. S. H. Goldman, and M. Lichten. 2000. Direct coupling between meiotic DNA replication and recombination initiation. Science 290:806–809.
  • Borde, V., W. Lin, E. Novikov, J. H. Petrini, M. Lichten, and A. Nicolas. 2004. Association of Mre11p with double-strand break sites during yeast meiosis. Mol. Cell 13:389–401.
  • Borde, V., T.-C. Wu, and M. Lichten. 1999. Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4832–4842.
  • Buck, M. J., and J. D. Lieb. 2004. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360.
  • Buck, M. J., A. B. Nobel, and J. D. Lieb. 2005. ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol. 6:R97.
  • Daignan-Fornier, B., and G. R. Fink. 1992. Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc. Natl. Acad. Sci. USA 89:6746–6750.
  • Denis, V., and B. Daignan-Fornier. 1998. Synthesis of glutamine, glycine, and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae. Mol. Gen. Genet. 259:246–255.
  • Denis, V., H. Boucherie, C. Monribot, and B. Daignan-Fornier. 1998. Role of the Myb-like protein Bas1p in Saccharomyces cerevisiae. Mol. Microbiol. 30:557–566.
  • DeRisi, J. L., V. R. Iyer, and P. O. Brown. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686.
  • Devlin, C., K. Tice-Baldwin, D. Shore, and K. T. Arndt. 1991. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11:3642–3651.
  • Fan, Q., F. Xu, and T. D. Petes. 1995. Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol. Cell. Biol. 15:1679–1688.
  • Fox, M. E., J. B. Virgin, J. Metzger, and G. R. Smith. 1997. Position- and orientation-independent activity of the Schizosaccharomyces pombe meiotic recombination hot spot M26. Proc. Natl. Acad. Sci. USA 94:7446–7451.
  • Gelling, C. L., M. D. Piper, S. P. Hong, G. D. Kornfeld, and I. W. Dawes. 2004. Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae. J. Biol. Chem. 279:7072–7081.
  • Gerton, J. L., J. DeRisi, R. Shroff, M. Lichten, P. O. Brown, and T. D. Petes. 2000. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97:11383–11390.
  • Glynn, E. F., P. C. Megee, H. G. Yu, C. Mistrot, E. Unal, D. E. Koshland, J. L. DeRisi, and J. L. Gerton. 2004. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2:1325–1339.
  • Harbison, C. T., D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macissac, T. W. Danford, N. M. Hannett, J.-B. Tagne, D. B. Reynolds, J. Yoo, E. G. Jennings, J. Zeitlinger, D. K. Pokholok, M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S. Lander, D. K. Gifford, E. Fraenkel, and R. A. Young. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104.
  • Huang, Y. 2002. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res. 30:1465–1482.
  • Kaback, D. B., D. Barber, J. Mahon, J. Lamb, and J. You. 1999. Chromosome-size dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 152:1475–1486.
  • Kauppi, L., A. J. Jeffreys, and S. Keeney. 2004. Where the crossovers are: recombination distributions in mammals. Nat. Rev. Genet. 5:413–424.
  • Keeney, S., C. N. Giroux, and N. Kleckner. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384.
  • Kirkpatrick, D. T., Y. H. Wang, M. Dominska, J. D. Griffith, and T. D. Petes. 1999. Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol. Cell. Biol. 19:7661–7671.
  • Klein, S., D. Zenvirth, V. Dror, A. B. Barton, D. B. Kaback, and G. Simchen. 1996. Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromosoma 105:276–284.
  • Kuo, M. H., P. Zhou, P. Jambeck, M. E. Churchill, and C. D. Allis. 1998. Histone acetyltransferase activity of yeast Gcn5 is required for the activation of target genes in vivo. Genes Dev. 12:627–639.
  • Kupiec, M., and T. D. Petes. 1988. Meiotic recombination between repeated transposable elements in yeast. Mol. Cell. Biol. 8:2942–2954.
  • Lambie, E. J., and G. S. Roeder. 1988. A yeast centromere acts in cis to inhibit meiotic gene conversion in yeast. Cell 52:863–873.
  • Lee, T. I., N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tague, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young. 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804.
  • Lengronne, A., Y. Katou, S. Mori, S. Yokobayashi, G. P. Kelly, T. Itoh, Y. Watanabe, K. Shirahige, and F. Uhlmann. 2004. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578.
  • Lichten, M., and A. S. H. Goldman. 1995. Meiotic recombination hotspots. Annu. Rev. Genet. 29:423–444.
  • Lieb, J. D., X. Liu, D. Botstein, and P. O. Brown. 2001. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat. Genet. 28:327–334.
  • Liu, X. S., D. L. Brutlag, and J. S. Liu. 2002. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol. 20:835–839.
  • Malkova, A., J. Swanson, M. German, J. H. McCusker, E. A. Housworth, F. W. Stahl, and J. E. Haber. 2004. Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168:49–63.
  • Marin, A., M. Gallardo, Y. Kato, K. Shirahige, G. Gutieerez, K. Ohta, and A. Aguilera. 2003. Relationship between G+C content, ORF-length and mRNA concentration in Saccharomyces cerevisiae. Yeast 20:703–711.
  • Morse, R. H. 2000. RAP, RAP, open up! New wrinkles for RAP1 in yeast. Trends Genet. 16:51–53.
  • Nag, D. K., and T. D. Petes. 1993. Physical detection of heteroduplexes during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 13:2324–2331.
  • Petes, T. D. 2001. Meiotic recombination hot spots and cold spots. Nat. Rev. Genet. 2:360–369.
  • Petes, T. D., and D. B. Botstein. 1977. Simple mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc. Natl. Acad. Sci. USA 74:5091–5095.
  • Petes, T. D., and J. D. Merker. 2002. Context dependence of meiotic recombination hotspots in yeast: the relationship between recombination activity of a reporter construct and base composition. Genetics 162:2049–2052.
  • Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast, p. 407–521. In J. Broach, E. Jones, and J. Pringle (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Pinson, B., O. S. Gabrielson, and B. Daignan-Fornier. 2000. Redox regulation of AMP synthesis in yeast: a role of Bas1p and Bas2p transcription factors. Mol. Microbiol. 36:1460–1469.
  • Pryde, F. E., and E. J. Louis. 1999. Limitations of silencing at native yeast telomeres. EMBO J. 18:2538–2550.
  • Rebora, K., C. Desmoucelles, F. Borne, B. Pinson, and B. Daignan-Fornier. 2001. Yeast AMP pathway genes respond to adenine through regulated synthesis of a metabolic intermediate. Mol. Cell. Biol. 21:7901–7912.
  • Springer, C., M. Kunzler, T. Balmelli, and G. H. Braus. 1996. Amino acid and adenine crosspathway regulation act through the same 5′-TGACTC-3′ motif in the yeast HIS7 promoter. J. Biol. Chem. 271:29637–29643.
  • Stapleton, A., and T. D. Petes. 1991. The Tn3 beta-lactamase gene acts as a hotspot for meiotic recombination in yeast. Genetics 127:39–51.
  • Tice-Baldwin, K., G. R. Fink, and K. T. Arndt. 1989. BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science 246:931–935.
  • Turney, D., T. de los Santos, and N. M. Hollingsworth. 2004. Does chromosome size affect map distance and genetic interference in budding yeast? Genetics 168:2421–2424.
  • Valerius, O., C. Brendel, C. Wagner, S. Krappmann, F. Thoma, and G. H. Braus. 2003. Nucleosome position-dependent and -independent activation of HIS7 expression in Saccharomyces cerevisiae by different transcriptional activators. Eukaryot. Cell 2:876–885.
  • White, M. A., P. Detloff, M. Strand, and T. D. Petes. 1992. A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr. Genet. 21:109–116.
  • White, M. A., M. Dominska, and T. D. Petes. 1993. Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:6621–6625.
  • White, M. A., M. Wierdl, P. Detloff, and T. D. Petes. 1991. DNA-binding protein RAP1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc. Natl. Acad. Sci. USA 88:9755–9759.
  • Wu, T.-C., and M. Lichten. 1994. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518.
  • Wu, T.-C., and M. Lichten. 1995. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140:55–66.
  • Yamada, T., K.-i. Mizuno, K. Hirtoa, N. Kon, W. Wahls, E. Hartsuiker, H. Murofushi, T. Shibata, and K. Ohta. 2004. Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J. 23:1792–1803.
  • Yamashita, K., M. Shinohara, and A. Shinohara. 2004. Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proc. Natl. Acad. Sci. USA 101:11380–11385.
  • Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed. 2002. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30:e15.
  • Zhang, F., M. Kirouac, N. Zhu, A. G. Hinnebusch, and R. J. Rolfes. 1997. Evidence that complex formation by Bas1p and Bas2p (Pho2p) unmasks the activation function of Bas1p in an adenine-repressible step of ADE gene transcription. Mol. Cell. Biol. 17:3272–3283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.