125
Views
121
CrossRef citations to date
0
Altmetric
Article

Mxr1p, a Key Regulator of the Methanol Utilization Pathway and Peroxisomal Genes in Pichia pastoris

, , , , , , , , , & show all
Pages 883-897 | Received 25 May 2005, Accepted 24 Oct 2005, Published online: 27 Mar 2023

REFERENCES

  • Anthony, C. 1982. The biochemistry of methylotrophs. Academic Press, New York, N.Y.
  • Brown, L. A., and A. Baker. 2003. Peroxisome biogenesis and the role of protein import. J. Cell. Mol. Med. 7:388–400.
  • Cavalli-Sforza, L. L., and J. Lederberg. 1956. Isolation of pre-adaptive mutants in bacteria by sib selection. Genetics 41:367–381.
  • Cereghino, G. P., D. P. Atencio, M. Saghbini, J. Beiner, and I. E. Scheffler. 1995. Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in S. cerevisiae: sequence elements in the 5′ untranslated region of the Ip mRNA play a dominant role. Mol. Biol. Cell 12:1125–1143.
  • Cereghino, G. P. L., J. L. Cereghino, A. J. Sunga, M. A. Johnson, M. Lim, M. A. G. Gleeson, and J. M. Cregg. 2001. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris. Gene 263:159–169.
  • Cereghino, J. L., and J. M. Cregg. 2001. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24:45–66.
  • Cherry, J. R., T. R. Johnson, C. Dollard, J. R. Shuster, and C. L. Denis. 1989. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator. ADR1. Cell 56:409–419.
  • Cook, W. J., D. Chase, D. C. Audino, and C. L. Denis. 1994. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol. Cell. Biol. 14:629–640.
  • Couderc, R., and J. Baratti. 1980. Oxidation of methanol by the yeast Pichia pastoris: purification and properties of alcohol oxidase. Agric. Biol. Chem. 44:2279–2289.
  • Cregg, J. M., K. J. Barringer, A. Y. Hessler, and K. R. Madden. 1985. Pichia pastoris as a host system for transformations. Mol. Cell. Biol. 5:3376–3385.
  • Cregg, J. M., and K. R. Madden. 1988. Development of the methylotrophic yeast, Pichia pastoris, as a host system for the production of foreign proteins. Dev. Ind. Microbiol. 29:33–41.
  • Cregg, J. M., K. R. Madden, K. J. Barringer, G. P. Thill, and C. A. Stillman. 1989. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol. Cell. Biol. 9:1316–1323.
  • Cregg, J. M., and K. A. Russell. 1998. Transformation, p. 27–39. In D. R. Higgins and J. M. Cregg (ed.), Pichia protocols, vol. 103. Humana Press, Totowa, N.J.
  • Cregg, J. M., S. Shen, M. Johnson, and H. R. Waterham. 1998. Classical genetic manipulation, p. 17–26. In D. R. Higgins and J. M. Cregg (ed.), Pichia protocols, vol. 103. Humana Press, Totowa, N.J.
  • Denis, C. L., S. C. Fontaine, D. Chase, B. E. Kemp, and L. T. Bemis. 1992. ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol. Cell. Biol. 12:1507–1514.
  • DeVit, M. J., J. A. Waddle, and M. Johnston. 1997. Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8:1603–1618.
  • Dommes, V., C. Baumgart, and W. H. Kunau. 1981. Degradation of unsaturated fatty acids in peroxisomes: existence of a 2,4-dienoyl-CoA reductase pathway. J. Biol. Chem. 256:8259–8262.
  • Douma, A. C., M. Veenhuis, W. de Koning, M. Evers, and W. Harder. 1985. Dihydroxacetone synthase is localized in the peroxisomal matrix of methanol-grown Hansenula polymorpha. Arch. Microbiol. 143:237–243.
  • Ellis, S. B., P. F. Brust, P. J. Koutz, A. F. Waters, M. M. Harpold, and T. R. Gingeras. 1985. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol. Cell. Biol. 5:1111–1121.
  • Fujiki, Y., R. A. Rachubinski, and P. B. Lazarow. 1984. Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc. Natl. Acad. Sci. USA 81:7127–7131.
  • Gould, S. J., D. McCollum, A. P. Spong, J. A. Heyman, and S. Subramani. 1992. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8:613–628.
  • Gurvitz, A., J. K. Hiltunenen, R. Erdmann, B. Hamilton, A. Hartig, H. Ruis, and H. Rottensteiner. 2001. Saccharomyces cerevisiae Adr1p governs fatty acid β-oxidation and peroxisome proliferation by regulating POX1 and PEX11. J. Biol. Chem. 276:31825–31830.
  • Gurvitz, A., L. Wabnegger, H. Rottensteiner, I. W. Dawes, A. Hartig, H. Ruis, and B. Hamilton. 2000. Adr1p-dependent regulation of the oleic acid-inducible yeast gene SPS19 encoding the peroxisomal β-oxidation auxiliary enzyme 2,4-dienoyl-CoA reductase. Mol. Cell Biol. Res. Commun. 4:81–89.
  • Harper, C. C., S. T. South, J. M. McCaffery, and S. J. Gould. 2002. Peroxisomal membrane protein import does not require Pex17p. J. Biol. Chem. 277:16498–16504.
  • Johnson, M. A., W. B. Snyder, J. L. Cereghino, M. Veenhuis, S. Subramani, and J. M. Cregg. 2001. Pichia pastoris Pex14p, a phosphorylated peroxisomal membrane protein, is part of a PTS-receptor docking complex and interacts with many peroxins. Yeast 18:621–641.
  • Johnson, M. A., H. R. Waterham, G. P. Ksheminska, L. R. Fayura, J. Lin-Cereghino, O. V. Stasyk, M. Veenhuis, A. R. Kulachkovsky, A. A. Sibirny, and J. M. Cregg. 1999. Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris. Genetics 151:1379–1391.
  • Karpichev, I. V., Y. Luo, R. C. Marians, and G. M. Small. 1997. A complex containing two transcription factors regulates peroxisome proliferation and the coordinate induction of β-oxidation enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:69–80.
  • Karpichev, I. V., and G. M. Small. 1998. Global regulatory functions of Oaf1p and Pip2p (Oaf2p), transcription factors that regulate genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6560–6570.
  • Kumagai, M. H., G. G. Sverlow, G. della-Cioppa, and L. K. Grill. 1993. Conversion of starch to ethanol in a recombinant Saccharomyces cerevisiae strain expressing rice alpha-amylase from a novel Pichia pastoris alcohol oxidase promoter. Biotechnology 11:606–610.
  • Leao-Helder, A. N., A. M. Krikken, I. J. Van der Klei, J. A. K. W. Kiel, and M. Veenhuis. 2003. Transcriptional down-regulation of peroxisome number affects selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 278:40749–40756.
  • Lederberg, J., and E. M. Lederberg. 1952. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63:399–406.
  • Liu, H., X. Tan, K. A. Russell, M. Veenhuis, and J. M. Cregg. 1995. PER3, a gene required for peroxisomal biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J. Biol. Chem. 270:10940–10951.
  • Liu, H., X. Tan, M. Veenhuis, D. McCollum, and J. M. Cregg. 1992. An efficient screen for peroxisome-deficient mutants of Pichia pastoris. J. Bacteriol. 174:4943–4951.
  • Ogata, K., H. Nishikawa, and M. Ohsugi. 1969. A yeast capable of utilizing methanol. Agric. Biol. Chem. 33:1519–1520.
  • Ohi, H., M. Miura, R. Hiramatsu, and T. Ohmura. 1994. The positive and negative cis-acting elements for methanol regulation in the Pichia pastoris AOX2 gene. Mol. Gen. Genet. 243:489–499.
  • Rossanese, O. W., J. Soderholm, B. J. Bevis, I. B. Sears, J. O'Connor, E. K. Williamson, and B. S. Glick. 1999. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145:69–81.
  • Rottensteiner, H., A. J. Kal, M. Filipits, M. Binder, B. Hamilton, H. F. Tabak, and H. Ruis. 1996. Pip2p: a transcriptional regulator of peroxisome proliferation in the yeast Saccharomyces cerevisiae. EMBO J. 15:2924–2934.
  • Rottensteiner, H., L. Wabnegger, R. Erdmann, B. Hamilton, H. Ruis, A. Hartig, and A. Gurvitz. 2003. Saccharomyces cerevisiae PIP2 mediating oleic acid induction and peroxisome proliferation is regulated by Adr1p and Pip2p-Oaf1p. J. Biol. Chem. 278:27605–27611.
  • Sacksteder, K. A., and S. J. Gould. 2000. Peroxisome biogenesis in yeast. Annu. Rev. Genet. 34:623–652.
  • Sakai, Y., and S. Subramani. 2000. Environmental response of yeast peroxisomes. Aspects of organelle assembly and degradation. Cell. Biochem. Biophys. 32:51–61.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schuller, H.-J. 2003. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43:139–160.
  • Shen, S., G. Sulter, T. W. Jeffries, and J. M. Cregg. 1998. A strong nitrogen source-related promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216:93–102.
  • Simon, M., M. Binder, G. Adam, A. Hartig, and H. Ruis. 1992. Control of peroxisome proliferation in Saccharomyces cerevisiae by ADR1, SNF1 (CAT1, CCR1) and SNF4 (CAT3). Yeast 8:303–309.
  • Simon, M. M., P. Pavlik, A. Hartig, M. Binder, H. Ruis, W. J. Cook, C. L. Denis, and B. Schanz. 1995. A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids. Mol. Gen. Genet. 249:289–296.
  • Simon, N., G. Adam, W. Rapataz, W. Spevak, and H. Ruis. 1991. The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol. Cell. Biol. 11:699–704.
  • Sloan, J. S., K. M. Dombek, and E. T. Young. 1999. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J. Biol. Chem. 274:37575–37582.
  • Small, G. M., T. Imanaka, H. Shio, and P. B. Lazarow. 1987. Efficient association of in vitro translation products with purified, stable Candida tropicalis peroxisomes. Mol. Cell. Biol. 7:1848–1855.
  • Subramani, S. 1998. Components involved in peroxisomal import, biogenesis, proliferation, turnover and movement. Physiol. Rev. 78:171–188.
  • Taylor, W. E., H. K. Suruki, A. H. T. Lin, P. Naraghi-Avani, R. Y. Igarashi, M. Younessian, P. Katkus, and N. V. Vo. 1995. Designing zinc-finger ADR1 mutants with altered specificity of DNA binding to T in UAS1 sequences. Biochemistry 34:3222–3230.
  • Thukral, S. K., A. Eisen, and E. T. Young. 1991. Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Mol. Cell. Biol. 11:1566–1577.
  • Thukral, S. K., M. A. Tavianini, H. Blumberg, and E. T. Young. 1989. Localization of a minimal binding domain and activation regions in yeast regulatory protein ADR1. Mol. Cell. Biol. 9:2360–2369.
  • Tschopp, J. F., P. F. Brust, J. M. Cregg, C. A. Stillman, and T. R. Gingeras. 1987. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 15:3859–3876.
  • Vallini, V., E. Berardi, and R. Strabbioli. 2000. Mutations affecting the expression of the MOX gene encoding peroxisomal methanol oxidase in Hansenula polymorpha. Curr. Genet. 38:163–170.
  • Van der Klei, I. J., L. V. Bystrykh, and W. Harder. 1990. Alcohol oxidase from Hansenula polymorpha CBS 4732. Methods Enzymol. 188:420–427.
  • Veenhuis, M., and W. Harder. 1987. Metabolic significance and biogenesis of microbodies in yeast, p. 436–458. In H. D. Fahimi and H. Sies (ed.), Peroxisomes in biology and medicine. Springer-Verlag, Berlin, Germany.
  • Veenhuis, M., J. P. van Dijken, and W. Harder. 1983. The significance of peroxisomes in the metabolism of one-carbon compounds in yeast. Adv. Microbiol. Physiol. 24:1–82.
  • Waterham, H. R., M. E. Digan, P. J. Koutz, S. V. Lair, and J. M. Cregg. 1997. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44.
  • Waterham, H. R., Y. de Vries, K. A. Russell, W. Xie, M. Veenhuis, and J. M. Cregg. 1996. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1. Mol. Cell. Biol. 16:2527–2536.
  • Young, E. T., K. M. Dombek, C. Tachibana, and T. Ideker. 2003. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 278:26146–26158.
  • Young, E. T., N. Kacherovsky, and K. Van Riper. 2002. Snf1 protein kinase regulated Adr1 binding to chromatin but not transcription activation. J. Biol. Chem. 277:38095–38103.
  • Young, E. T., J. Saario, N. Kacherovsky, A. Chao, J. S. Sloan, and K. M. Dombek. 1998. Characterization of a p53-related activation domain in Adr1 that is sufficient for ADR1-dependent gene expression. J. Biol. Chem. 273:32080–32087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.