27
Views
46
CrossRef citations to date
0
Altmetric
Article

CtIP Activates Its Own and Cyclin D1 Promoters via the E2F/RB Pathway during G1/S Progression

&
Pages 3124-3134 | Received 26 Oct 2005, Accepted 18 Jan 2006, Published online: 27 Mar 2023

REFERENCES

  • Albanese, C., J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and R. G. Pestell. 1995. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270:23589–23597.
  • Angus, S. P., C. N. Mayhew, D. A. Solomon, W. A. Braden, M. P. Markey, Y. Okuno, M. C. Cardoso, D. M. Gilbert, and E. S. Knudsen. 2004. RB reversibly inhibits DNA replication via two temporally distinct mechanisms. Mol. Cell. Biol. 24:5404–5420.
  • Attisano, L., and J. L. Wrana. 2002. Signal transduction by the TGF-β superfamily. Science 296:1646–1647.
  • Baldin, V., J. Lukas, M. J. Marcote, M. Pagano, and G. Draetta. 1993. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7:812–821.
  • Batsche, E., C. Muchardt, J. Behrens, H. Hurst, and C. Cremisi. 1998. RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol. Cell. Biol. 18:3647–3658.
  • Blais, A., and B. D. Dynlacht. 2004. Hitting their targets: an emerging picture of E2F and cell cycle control. Curr. Opin. Genet. Dev. 14:527–532.
  • Bosco, G., W. Du, and T. L. Orr-Weaver. 2001. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat. Cell Biol. 3:289–295.
  • Bryan, T. M., and R. R. Reddel. 1994. SV40-induced immortalization of human cells. Crit. Rev. Oncog. 5:331–357.
  • Buckley, M. F., K. J. Sweeney, J. A. Hamilton, R. L. Sini, D. L. Manning, R. I. Nicholson, A. deFazio, C. K. Watts, E. A. Musgrove, and R. L. Sutherland. 1993. Expression and amplification of cyclin genes in human breast cancer. Oncogene 8:2127–2133.
  • Chakrabarti, S. K., J. C. James, and R. G. Mirmira. 2002. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J. Biol. Chem. 277:13286–13293.
  • Chen, C., L. C. Edelstein, and C. Gelinas. 2000. The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bcl-xL. Mol. Cell. Biol. 20:2687–2695.
  • Chen, C. R., Y. Kang, P. M. Siegel, and J. Massague. 2002. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110:19–32.
  • Chen, P.-L., D. J. Riley, and W.-H. Lee. 1995. The retinoblastoma protein as a fundamental mediator of growth and differentiation signals. Crit. Rev. Eukaryot. Gene Expr. 5:79–95.
  • Chen, P.-L., F. Liu, S. Cai, X. Lin, A. Li, Y. Chen, B. Gu, E.-P. Lee, and W.-H. Lee. 2005. Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency. Mol. Cell. Biol. 25:3535–3542.
  • Chinnadurai, G. 2002. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 9:213–224.
  • Conaway, R. C., S. Sato, C. Tomomori-Sato, T. Yao, and J. W. Conaway. 2005. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30:250–255.
  • Danis, E., K. Brodolin, S. Menut, D. Maiorano, C. Girard-Reydet, and M. Mechali. 2004. Specification of a DNA replication origin by a transcription complex. Nat. Cell Biol. 6:721–730.
  • DeGregori, J., T. Kowalik, and J. R. Nevins. 1995. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 15:4215–4224.
  • Dick, F., E. Sailhamer, and N. Dyson. 2000. Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol. Cell. Biol. 20:3715–3727.
  • Dubin, M., P. Stokes, E. Sum, R. Williams, V. Valova, P. Robinson, G. Lindeman, J. Glover, J. Visvader, and J. Matthews. 2004. Dimerization of CtIP, a BRCA1- and CtBP-interacting protein, is mediated by an N-terminal coiled-coil motif. J. Biol. Chem. 279:26932–26938.
  • Feng, X. H., X. Lin, and R. Derynck. 2000. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-β. EMBO J. 19:5178–5193.
  • Foley, K. P., and R. N. Eisenman. 1999. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/MAX/MAD network. Biochim. Biophys. Acta 1423:M37–M47.
  • Frolov, M., and N. Dyson. 2004. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J. Cell Sci. 117:2173–2181.
  • Fry, C., and P. Farnham. 1999. Context-dependent transcriptional regulation. J. Biol. Chem. 274:29583–29586.
  • Fusco, C., A. Reymond, and A. Zervos. 1998. Molecular cloning and characterization of a novel retinoblastoma-binding protein. Genomics 51:351–358.
  • Georgopoulos, K. 2002. Haematopoietic cell-fate decisions, chromatin regulation and Ikaros. Nat. Rev. Immunol. 2:162–174.
  • Goodrich, D., N. Wang, Y. Qian, E.-Y. H. P. Lee, and W.-H. Lee. 1991. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67:293–302.
  • Harbour, J. W., and D. C. Dean. 2000. Rb function in cell-cycle regulation and apoptosis. Nat. Cell Biol. 2:E65–E67.
  • Harbour, J. W., R. X. Luo, A. Dei Santi, A. A. Postigo, and D. C. Dean. 1999. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98:859–869.
  • Hatakeyama, M., J. A. Brill, G. R. Fink, and R. A. Weinberg. 1994. Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes Dev. 8:1759–1771.
  • Hawley, D. 1991. Transcriptional activation: enter TFIIB. Trends Biochem. Sci. 16:317–318.
  • Helt, A. M., and D. A. Galloway. 2003. Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis 24:159–169.
  • Hildebrand, J., and P. Soriano. 2002. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol. Cell. Biol. 22:5296–5307.
  • Hinds, P. W., S. Mittnacht, V. Dulic, A. Arnold, S. I. Reed, and R. A. Weinberg. 1992. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70:993–1006.
  • Hitomi, M., and D. W. Stacey. 1999. Cellular Ras and cyclin D1 are required during different cell cycle periods in cycling NIH 3T3 cells. Mol. Cell. Biol. 19:4623–4632.
  • Hussein, M. R. 2005. Transforming growth factor-beta and malignant melanoma: molecular mechanisms. J. Cutan. Pathol. 32:389–395.
  • Johnson, D. G., W. D. Cress, L. Jakoi, and J. R. Nevins. 1994. Oncogenic capacity of the E2F1 gene. Proc. Natl. Acad. Sci. USA 91:12823–12827.
  • Joyce, D., C. Albanese, J. Steer, M. Fu, B. Bouzahzah, and R. G. Pestell. 2001. NF-κB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev. 12:73–90.
  • Kato, J., H. Matsushime, S. W. Hiebert, M. E. Ewen, and C. J. Sherr. 1993. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7:331–342.
  • Koipally, J., and K. Georgopoulos. 2002. Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression. J. Biol. Chem. 277:23143–23149.
  • Koipally, J., and K. Georgopoulos. 2002. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J. Biol. Chem. 275:19594–19602.
  • Lee, E.-Y. H. P., C.-Y. Chang, N. Hu, Y.-C. Wang, C.-C. Lai, K. Herrup, W.-H. Lee, and A. Bradley. 1992. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294.
  • Li, S., P. Chen, T. Subramanian, G. Chinnadurai, G. Tomlinson, C. Osborne, Z. Sharp, and W.-H. Lee. 1999. Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J. Biol. Chem. 274:11334–11338.
  • Li, S., N. Ting, L. Zheng, P. Chen, Y. Ziv, Y. Shiloh, E.-Y. H. P. Lee, and W.-H. Lee. 2000. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215.
  • Lin, H. R., N. S. Ting, J. Qin, and W.-H. Lee. 2003. M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex. J. Biol. Chem. 278:35979–35987.
  • MacAlpine, D. M., H. K. Rodriguez, and S. P. Bell. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18:3094–3105.
  • Maser, R. S., O. K. Mirzoeva, J. Wells, H. Olivares, B. R. Williams, R. A. Zinkel, P. J. Farnham, and J. H. Petrini. 2001. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell. Biol. 21:6006–6016.
  • Meloni, A., E. Smith, and J. Nevins. 1999. A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc. Natl. Acad. Sci. USA 96:9574–9579.
  • Meyerson, M., and E. Harlow. 1994. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol. Cell. Biol. 14:2077–2086.
  • Muller, H., and K. Helin. 2000. The E2F transcription factors: key regulators of cell proliferation. Biochim. Biophys. Acta 1470:M1–M12.
  • Muller, M., R. Lucchini, and J. M. Sogo. 2000. Replication of yeast rDNA initiates downstream of transcriptionally active genes. Mol. Cell 5:767–777.
  • Naeve, G., A. Sharma, and A. Lee. 1991. Temporal events regulating the early phases of the mammalian cell cycle. Curr. Opin. Cell Biol. 3:261–268.
  • Nevins, J. R., G. Leone, J. DeGregori, and L. Jakoi. 1997. Role of the Rb/E2F pathway in cell growth control. J. Cell. Physiol. 173:233–236.
  • Nibu, Y., H. Zhang, and M. Levine. 1998. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 280:101–104.
  • Perkins, N. D. 2004. NF-κB: tumor promoter or suppressor? Trends Cell Biol. 14:64–69.
  • Poortinga, G., M. Watanabe, and S. Parkhurst. 1998. Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and Hairy-mediated transcriptional repression. EMBO J. 17:2067–2078.
  • Postigo, A. A., and D. C. Dean. 2000. Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors. Proc. Natl. Acad. Sci. USA 97:6391–6396.
  • Riley, D. J., E.-Y. Lee, and W.-H. Lee. 1994. The retinoblastoma protein: more than a tumor suppressor. Annu. Rev. Cell Biol. 10:1–29.
  • Roberts, S., I. Ha, E. Maldonado, D. Reinberg, and M. Green. 1993. Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363:741–744.
  • Schaeper, U., T. Subramanian, L. Lim, J. Boyd, and G. Chinnadurai. 1998. Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J. Biol. Chem. 273:8549–8552.
  • Serrano, M., G. J. Hannon, and D. Beach. 1993. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707.
  • Sherr, C. J. 1995. D-type cyclins. Trends Biochem. Sci. 20:187–190.
  • Shi, Y., J. Sawada, G. Sui, E. B. Affar, J. Whetstine, F. Lan, H. Ogawa, M. Luke, Y. Nakatani, and Y. Shi. 2003. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738.
  • Siddiqui, H., D. A. Solomon, R. W. Gunawardena, Y. Wang, and E. S. Knudsen. 2003. Histone deacetylation of RB-responsive promoters: requisite for specific gene repression but dispensable for cell cycle inhibition. Mol. Cell. Biol. 23:7719–7731.
  • Sollerbrant, K., G. Chinnadurai, and C. Svensson. 1996. The CtBP binding domain in the adenovirus E1A protein controls CR1-dependent transactivation. Nucleic Acids Res. 24:2578–2584.
  • Somasundaram, K., H. Zhang, Y. Zeng, Y. Houvras, Y. Peng, H. Zhang, G. Wu, J. Licht, B. Weber, and W. El-Deiry. 1997. Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature 389:187–190.
  • Stacey, D. W. 2003. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr. Opin. Cell Biol. 15:158–163.
  • Sterner, J. M., S. Dew-Knight, C. Musahl, S. Kornbluth, and J. M. Horowitz. 1998. Negative regulation of DNA replication by the retinoblastoma protein is mediated by its association with MCM7. Mol. Cell. Biol. 18:2748–2757.
  • Sum, E., B. Peng, X. Yu, J. Chen, J. Byrne, G. Lindeman, and J. Visvader. 2002. The LIM domain protein LMO4 interacts with the cofactor CtIP and the tumor suppressor BRCA1 and inhibits BRCA1 activity. J. Biol. Chem. 277:7849–7856.
  • Sutherland, R. L., and E. A. Musgrove. 2004. Cyclins and breast cancer. J. Mammary Gland Biol. Neoplasia 9:95–104.
  • Tan, W., L. Zheng, W.-H. Lee, and T. G. Boyer. 2004. Functional dissection of transcription factor ZBRK1 reveals zinc fingers with dual roles in DNA-binding and BRCA1-dependent transcriptional repression. J. Biol. Chem. 279:6576–6587.
  • Turner, J., and M. Crossley. 1998. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. EMBO J. 17:5129–5140.
  • Turner, J., and M. Crossley. 1999. Mammalian Krüppel-like transcription factors: more than just a pretty finger. Trends Biochem. Sci. 24:236–240.
  • Wong, A., P. Ormonde, R. Pero, Y. Chen, L. Lian, G. Salada, S. Berry, Q. Lawrence, P. Dayananth, P. Ha, S. Tavtigian, D. Teng, and P. Bartel. 1998. Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 17:2279–2285.
  • Xia, C., S. Watton, S. Nagl, J. Samuel, J. Lovegrove, J. Cheshire, and P. Woo. 2004. Novel sites in the p65 subunit of NF-κB interact with TFIIB to facilitate NF-κB induced transcription. FEBS Lett. 561:217–222.
  • Yamasaki, L., T. Jacks, R. Bronson, E. Goillot, E. Harlow, and N. J. Dyson. 1996. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85:537–548.
  • Yu, X., and R. Baer. 2000. Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor. J. Biol. Chem. 275:18541–18549.
  • Yu, X., and J. Chen. 2004. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol. Cell. Biol. 24:9478–9486.
  • Yu, X., L. Wu, A. Bowcock, A. Aronheim, and R. Baer. 1998. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273:25388–25392.
  • Zhang, H. S., M. Gavin, A. Dahiya, A. A. Postigo, D. Ma, R. X. Luo, J. W. Harbour, and D. C. Dean. 2000. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101:79–89.
  • Zheng, L., S. Li, T. G. Boyer, and W.-H. Lee. 2000. Lessons learned from BRCA1 and BRCA2. Oncogene 19:6159–6175.
  • Zheng, L., H. Pan, S. Li, A. Flesken-Nikitin, P.-L. Chen, T. G. Boyer, and W.-H. Lee. 2000. Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol. Cell 6:757–768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.