140
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of PAX6 and NFAT4 as the Transcriptional Regulators of the Long Noncoding RNA Mrhl in Neuronal Progenitors

, , , , & ORCID Icon
Article: e00036-22 | Received 27 Jan 2022, Accepted 30 Sep 2022, Published online: 24 Feb 2023

REFERENCES

  • Zhang P, Wu W, Chen Q, Chen M. 2019. Non-coding RNAs and their integrated networks. J Integrative Bioinformatics 16:20190027. https://doi.org/10.1515/jib-2019-0027.
  • Marchese FP, Raimondi I, Huarte M. 2017. The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18:206. https://doi.org/10.1186/s13059-017-1348-2.
  • Jarroux J, Morillon A, Pinskaya M. 2017. History, discovery, and classification of lncRNAs. Adv Exp Med Biol 1008:1–46. https://doi.org/10.1007/978-981-10-5203-3_1.
  • Hartford CCR, Lal A. 2020. When long noncoding becomes protein coding. Mol Cell Biol 40:e00528-19. https://doi.org/10.1128/MCB.00528-19.
  • Xing J, Liu H, Jiang W, Wang L. 2020. lncRNA-encoded peptide: functions and predicting methods. Front Oncol 10:622294. https://doi.org/10.3389/fonc.2020.622294.
  • Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu Y-M, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM. 2015. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208. https://doi.org/10.1038/ng.3192.
  • Kopp F, Mendell JT. 2018. Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407. https://doi.org/10.1016/j.cell.2018.01.011.
  • Wapinski O, Chang HY. 2011. Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361. https://doi.org/10.1016/j.tcb.2011.04.001.
  • Sun M, Kraus WL. 2015. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 36:25–64. https://doi.org/10.1210/er.2014-1034.
  • Li L, Zhuang Y, Zhao X, Li X. 2018. Long non-coding RNA in neuronal development and neurological disorders. Front Genet 9:744.
  • Chen Y, Tergaonkar V. 2020. lncRNAs: master regulators in disease and cancer. Proc Singapore Natl Acad Sci 14:79–89. https://doi.org/10.1142/S2591722620400062.
  • Rosa A, Ballarino M. 2016. Long noncoding RNA regulation of pluripotency. Stem Cells Int 2016:1797692. https://doi.org/10.1155/2016/1797692.
  • Yoon JH, Abdelmohsen K, Gorospe M. 2013. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425:3723–3730. https://doi.org/10.1016/j.jmb.2012.11.024.
  • Akhade VS, Pal D, Kanduri C. 2017. Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol 1008:47–74. https://doi.org/10.1007/978-981-10-5203-3_2.
  • Zhao Y, Liu H, Zhang Q, Zhang Y. 2020. The functions of long non-coding RNAs in neural stem cell proliferation and differentiation. Cell Biosci 10:74. https://doi.org/10.1186/s13578-020-00435-x.
  • Roberts TC, Morris KV, Wood MJ. 2014. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc B 369:20130507. https://doi.org/10.1098/rstb.2013.0507.
  • Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. 2015. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 88:861–877. https://doi.org/10.1016/j.neuron.2015.09.045.
  • Hart RP, Goff LA. 2016. Long noncoding RNAs: central to nervous system development. Int J Dev Neurosci 55:109–116. https://doi.org/10.1016/j.ijdevneu.2016.06.001.
  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. 2008. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721. https://doi.org/10.1073/pnas.0706729105.
  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. https://doi.org/10.1101/gr.132159.111.
  • Kadakkuzha BM, Liu XA, McCrate J, Shankar G, Rizzo V, Afinogenova A, Young B, Fallahi M, Carvalloza AC, Raveendra B, Puthanveettil SV. 2015. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front Cell Neurosci 9:63.
  • Liau WS, Samaddar S, Banerjee S, Bredy TW. 2021. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biology 18:1025–1036. https://doi.org/10.1080/15476286.2020.1868165.
  • Lv J, Cui W, Liu H, He H, Xiu Y, Guo J, Liu H, Liu Q, Zeng T, Chen Y, Zhang Y, Wu Q. 2013. Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS One 8:e71152. https://doi.org/10.1371/journal.pone.0071152.
  • Antoniou D, Stergiopoulos A, Politis PK. 2014. Recent advances in the involvement of long non-coding RNAs in neural stem cell biology and brain pathophysiology. Front Physiol 5:155.
  • Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Soldà G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS. 2008. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:1433–1445. https://doi.org/10.1101/gr.078378.108.
  • Mohamed JS, Gaughwin PM, Lim B, Robson P, Lipovich L. 2010. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16:324–337. https://doi.org/10.1261/rna.1441510.
  • Hezroni H, Ben Tov Perry R, Gil N, Degani N, Ulitsky I. 2020. Regulation of neuronal commitment in mouse embryonic stem cells by the Reno1/Bahcc1 locus. EMBO Rep 21:e51264.
  • Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M, Martin RD, Elcavage LE, Liapis SC, Gonzalez-Celeiro M, Plana O, Li E, Gerhardinger C, Tomassy GS, Arlotta P, Rinn JL. 2015. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 112:6855–6862. https://doi.org/10.1073/pnas.1411263112.
  • Fullard JF, Hauberg ME, Bendl J, Egervari G, Cirnaru MD, Reach SM, Motl J, Ehrlich ME, Hurd YL, Roussos P. 2018. An atlas of chromatin accessibility in the adult human brain. Genome Res 28:1243–1252. https://doi.org/10.1101/gr.232488.117.
  • Zhang L, Xue Z, Yan J, Wang J, Liu Q, Jiang H. 2019. lncRNA Riken-201 and Riken-203 modulates neural development by regulating the Sox6 through sequestering miRNAs. Cell Prolif 52:e12573. https://doi.org/10.1111/cpr.12573.
  • Knauss JL, Miao N, Kim SN, Nie Y, Shi Y, Wu T, Pinto HB, Donohoe ME, Sun T. 2018. Long noncoding RNA Sox2ot and transcription factor YY1 co-regulate the differentiation of cortical neural progenitors by repressing Sox2. Cell Death Dis 9:799. https://doi.org/10.1038/s41419-018-0840-2.
  • Ng SY, Bogu GK, Soh BS, Stanton LW. 2013. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51:349–359. https://doi.org/10.1016/j.molcel.2013.07.017.
  • Nishant KT, Ravishankar H, Rao MRS. 2004. Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol Cell Biol 24:5620–5634. https://doi.org/10.1128/MCB.24.12.5620-5634.2004.
  • Ganesan G, Rao SM. 2008. A novel noncoding RNA processed by Drosha is restricted to nucleus in mouse. RNA 14:1399–1410. https://doi.org/10.1261/rna.838308.
  • Arun G, Akhade VS, Donakonda S, Rao MRS. 2012. mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol Cell Biol 32:3140–3152. https://doi.org/10.1128/MCB.00006-12.
  • Akhade VS, Arun G, Donakonda S, Rao MRS. 2014. Genome wide chromatin occupancy of mrhl RNA and its role in gene regulation in mouse spermatogonial cells. RNA Biol 11:1262–1279. https://doi.org/10.1080/15476286.2014.996070.
  • Akhade VS, Dighe SN, Kataruka S, Rao MRS. 2016. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells. Nucleic Acids Res 44:387–401. https://doi.org/10.1093/nar/gkv1023.
  • Pal D, Neha CV, Bhaduri U, Zenia Z, Dutta S, Chidambaram S, Rao MRS. 2021. lncRNA Mrhl orchestrates differentiation programs in mouse embryonic stem cells through chromatin mediated regulation. Stem Cell Res 53:102250. https://doi.org/10.1016/j.scr.2021.102250.
  • Fatima R, Choudhury SR, Divya TR, Bhaduri U, Rao MRS. 2019. A novel enhancer RNA, Hmrhl, positively regulates its host gene, phkb, in chronic myelogenous leukemia. Noncoding RNA Res 4:96–108. https://doi.org/10.1016/j.ncrna.2019.08.001.
  • Choudhury SR, Dutta S, Bhaduri U, Rao MRS. 2021. lncRNA Hmrhl regulates expression of cancer related genes in chronic myelogenous leukemia through chromatin association. NAR Cancer 3:zcab042. https://doi.org/10.1093/narcan/zcab042.
  • Yao B, Jin P. 2014. Unlocking epigenetic codes in neurogenesis. Genes Dev 28:1253–1271. https://doi.org/10.1101/gad.241547.114.
  • Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M. 2012. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1:703–714. https://doi.org/10.1016/j.celrep.2012.04.009.
  • Su Z, Zhang Y, Liao B, Zhong X, Chen X, Wang H, Guo Y, Shan Y, Wang L, Pan G. 2018. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition. J Biol Chem 293:4445–4455. https://doi.org/10.1074/jbc.M117.815449.
  • Liu J, Wu X, Zhang H, Pfeifer GP, Lu Q. 2017. Dynamics of RNA polymerase II pausing and bivalent histone H3 methylation during neuronal differentiation in brain development. Cell Rep 20:1307–1318. https://doi.org/10.1016/j.celrep.2017.07.046.
  • Bibel M, Richter J, Lacroix E, Barde YA. 2007. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc 2:1034–1043. https://doi.org/10.1038/nprot.2007.147.
  • Plachta N, Bibel M, Tucker KL, Barde YA. 2004. Developmental potential of defined neural progenitors derived from mouse embryonic stem cells. Development 131:5449–5456. https://doi.org/10.1242/dev.01420.
  • Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F. 2011. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25:930–945. https://doi.org/10.1101/gad.627811.
  • Bouchard M, Grote D, Craven SE, Sun Q, Steinlein P, Busslinger M. 2005. Identification of Pax2-regulated genes by expression profiling of the mid-hindbrain organizer region. Development 132:2633–2643. https://doi.org/10.1242/dev.01833.
  • Wang H, Huo X, Yang X-R, He J, Cheng L, Wang N, Deng X, Jin H, Wang N, Wang C, Zhao F, Fang J, Yao M, Fan J, Qin W. 2017. STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer 16:136. https://doi.org/10.1186/s12943-017-0680-1.
  • Lee TY, Chang WC, Hsu JBK, Chang TH, Shien DM. 2012. GPMiner: an integrated system for mining combinatorial cis-regulatory elements in mammalian gene group. BMC Genomics 13:S3–12. https://doi.org/10.1186/1471-2164-13-S1-S3.
  • Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen C-y, Chou A, Ienasescu H, Lim J, Shyr C, Tan G, Zhou M, Lenhard B, Sandelin A, Wasserman WW. 2014. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42:D142–D147. https://doi.org/10.1093/nar/gkt997.
  • Chenn A, Walsh CA. 2002. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369. https://doi.org/10.1126/science.1074192.
  • Machon O, Van Den Bout CJ, Backman M, Kemler R, Krauss S. 2003. Role of β-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122:129–143. https://doi.org/10.1016/S0306-4522(03)00519-0.
  • Woodhead GJ, Mutch CA, Olson EC, Chenn A. 2006. Cell-autonomous β-catenin signaling regulates cortical precursor proliferation. J Neurosci 26:12620–12630. https://doi.org/10.1523/JNEUROSCI.3180-06.2006.
  • Gaiano N, Nye JS, Fishell G. 2000. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26:395–404. https://doi.org/10.1016/S0896-6273(00)81172-1.
  • Mizutani KI, Yoon K, Dang L, Tokunaga A, Gaiano N. 2007. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449:351–355. https://doi.org/10.1038/nature06090.
  • Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. 2010. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30:3489–3498. https://doi.org/10.1523/JNEUROSCI.4987-09.2010.
  • Sakamoto M, Hirata H, Ohtsuka T, Bessho Y, Kageyama R. 2003. The basic helix-loop-helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain. J Biol Chem 278:44808–44815. https://doi.org/10.1074/jbc.M300448200.
  • Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, Van Heyningen V, Rubenstein JL, Livesey FJ. 2009. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 5:e1000511. https://doi.org/10.1371/journal.pgen.1000511.
  • Thakurela S, Tiwari N, Schick S, Garding A, Ivanek R, Berninger B, Tiwari VK. 2016. Mapping gene regulatory circuitry of Pax6 during neurogenesis. Cell Discov 2:15045. https://doi.org/10.1038/celldisc.2015.45.
  • Sun J, Rockowitz S, Xie Q, Ashery-Padan R, Zheng D, Cvekl A. 2015. Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development. Nucleic Acids Res 43:6827–6846. https://doi.org/10.1093/nar/gkv589.
  • Xie Q, Cvekl A. 2011. The orchestration of mammalian tissue morphogenesis through a series of coherent feed-forward loops. J Biol Chem 286:43259–43271. https://doi.org/10.1074/jbc.M111.264580.
  • Xie Q, Yang Y, Huang J, Ninkovic J, Walcher T, Wolf L, Vitenzon A, Zheng D, Götz M, Beebe DC, Zavadil J, Cvekl A. 2013. Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain. PLoS One 8:e54507. https://doi.org/10.1371/journal.pone.0054507.
  • Pinson J, Mason JO, Simpson TI, Price DJ. 2005. Regulation of the Pax6: Pax6 (5a) mRNA ratio in the developing mammalian brain. BMC Dev Biol 5:1–4. https://doi.org/10.1186/1471-213X-5-13.
  • Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H. 2001. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev 15:1272–1286. https://doi.org/10.1101/gad.887101.
  • Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, Valmier J, Copeland NG, Jenkins NA, Richard S, Marmigère F. 2016. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. Elife 5:e11627. https://doi.org/10.7554/eLife.11627.
  • Yamada T, Urano-Tashiro Y, Tanaka S, Akiyama H, Tashiro F. 2013. Involvement of crosstalk between Oct4 and Meis1a in neural cell fate decision. PLoS One 8:e56997. https://doi.org/10.1371/journal.pone.0056997.
  • Owa T, Taya S, Miyashita S, Yamashita M, Adachi T, Yamada K, Yokoyama M, Aida S, Nishioka T, Inoue YU, Goitsuka R, Nakamura T, Inoue T, Kaibuchi K, Hoshino M. 2018. Meis1 coordinates cerebellar granule cell development by regulating Pax6 transcription, BMP signaling and Atoh1 degradation. J Neurosci 38:1277–1294. https://doi.org/10.1523/JNEUROSCI.1545-17.2017.
  • Vihma H, Luhakooder M, Pruunsild P, Timmusk T. 2016. Regulation of different human NFAT isoforms by neuronal activity. J Neurochem 137:394–408. https://doi.org/10.1111/jnc.13568.
  • Wild AR, Sinnen BL, Dittmer PJ, Kennedy MJ, Sather WA, Dell’Acqua ML. 2019. Synapse-to-nucleus communication through NFAT is mediated by L-type Ca2+ channel Ca2+ spike propagation to the soma. Cell Rep 26:3537–3550.E4. https://doi.org/10.1016/j.celrep.2019.03.005.
  • Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, Ponting CP. 2014. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife 3:e04530. https://doi.org/10.7554/eLife.04530.
  • Xu Y, Xi J, Wang G, Guo Z, Sun Q, Lu C, Ma L, Wu Y, Jia W, Zhu S, Guo X, Bian S, Kang J. 2021. PAUPAR and PAX6 sequentially regulate human embryonic stem cell cortical differentiation. Nucleic Acids Res 49:1935–1950. https://doi.org/10.1093/nar/gkab030.
  • Alammari F. 2019. KAP1-Paupar lncRNA chromatin regulatory complex controls subventricular zone neurogenesis. PhD thesis, University of Oxford, Oxford, United Kingdom.
  • Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. 2006. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484. https://doi.org/10.1101/gad.1416106.
  • Stamou M, Ng S-Y, Brand H, Wang H, Plummer L, Best L, Havlicek S, Hibberd M, Khor CC, Gusella J, Balasubramanian R, Talkowski M, Stanton LW, Crowley WF. 2020. A balanced translocation in Kallmann syndrome implicates a long noncoding RNA, RMST, as a GnRH neuronal regulator. J Clin Endocrinol Metab 105:e231–e244. https://doi.org/10.1210/clinem/dgz011.
  • Andersen RE. 2019. The novel long noncoding RNA Pnky regulates neurogenesis and neural stem cell maintenance in vivo. PhD thesis, University of California, San Francisco, CA.
  • Ramos AD, Andersen RE, Liu SJ, Nowakowski TJ, Hong SJ, Gertz CC, Salinas RD, Zarabi H, Kriegstein AR, Lim DA. 2015. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16:439–447. https://doi.org/10.1016/j.stem.2015.02.007.
  • Tian K, Wang A, Wang J, Li W, Shen W, Li Y, Luo Z, Liu Y, Zhou Y. 2021. Transcriptome analysis identifies SenZfp536, a sense lncRNA that suppresses self-renewal of cortical neural progenitors. Neurosci Bull 37:183–200. https://doi.org/10.1007/s12264-020-00607-2.
  • Cui Y, Yin Y, Xiao Z, Zhao Y, Chen B, Yang B, Xu B, Song H, Zou Y, Ma X, Dai J. 2019. lncRNA Neat1 mediates miR-124-induced activation of Wnt/β-catenin signaling in spinal cord neural progenitor cells. Stem Cell Res Ther 10:400. https://doi.org/10.1186/s13287-019-1487-3.
  • Zhang L, Yan J, Liu Q, Xie Z, Jiang H. 2019. lncRNA Rik-203 contributes to anesthesia neurotoxicity via microRNA-101a-3p and GSK-3β-mediated neural differentiation. Sci Rep 9:6822. https://doi.org/10.1038/s41598-019-42991-4.
  • Wu SC, Kallin EM, Zhang Y. 2010. Role of H3K27 methylation in the regulation of lncRNA expression. Cell Res 20:1109–1116. https://doi.org/10.1038/cr.2010.114.
  • Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q, Cen B, Ji A. 2014. Regulation of lncRNA expression. Cell Mol Biol Lett 19:561–575. https://doi.org/10.2478/s11658-014-0212-6.
  • Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, McDonel PE, Guttman M, Lander ES. 2016. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539:452–455. https://doi.org/10.1038/nature20149.
  • Zelinger L, Karakülah G, Chaitankar V, Kim JW, Yang HJ, Brooks MJ, Swaroop A. 2017. Regulation of noncoding transcriptome in developing photoreceptors by rod differentiation factor NRL. Invest Ophthalmol Vis Sci 58:4422–4435. https://doi.org/10.1167/iovs.17-21805.
  • Sun Z, Huang G, Cheng H. 2019. Transcription factor Nrf2 induces the up-regulation of lncRNA TUG1 to promote progression and adriamycin resistance in urothelial carcinoma of the bladder. Cancer Manag Res 11:6079–6090. https://doi.org/10.2147/CMAR.S200998.
  • Huang T, Wang G, Yang L, Peng B, Wen Y, Ding G, Wang Z. 2017. Transcription factor YY1 modulates lung cancer progression by activating lncRNA-PVT1. DNA Cell Biol 36:947–958. https://doi.org/10.1089/dna.2017.3857.
  • Sun J, Zhao Y, McGreal R, Cohen-Tayar Y, Rockowitz S, Wilczek C, Ashery-Padan R, Shechter D, Zheng D, Cvekl A. 2016. Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Epigenet Chromatin 9:37. https://doi.org/10.1186/s13072-016-0087-z.
  • Pijnappel WP, Baltissen MP, Timmers HM. 2013. Protocol for lentiviral knock down in mouse ES cells. Protocol Exchange. https://doi.org/10.1038/protex.2013.036.
  • de Planell-Saguer M, Rodicio MC, Mourelatos Z. 2010. Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat Protoc 5:1061–1073. https://doi.org/10.1038/nprot.2010.62.
  • Cotney JL, Noonan JP. 2015. Chromatin immunoprecipitation with fixed animal tissues and preparation for high-throughput sequencing. Cold Spring Harb Protoc 2015::191–199. https://doi.org/10.1101/pdb.prot084848.
  • Furlan-Magaril M, Rincón-Arano H, Recillas-Targa F. 2009. Sequential chromatin immunoprecipitation protocol: ChIP-reChIP. Methods Mol Biol 543:253–266. https://doi.org/10.1007/978-1-60327-015-1_17.
  • Uchil PD, Nagarajan A, Kumar P. 2017. Assay for β-galactosidase in extracts of mammalian cells. Cold Spring Harb Protoc 2017:pdb.prot095778. https://doi.org/10.1101/pdb.prot095778.
  • Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.