129
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Biochemical Characterization of the TINTIN Module of the NuA4 Complex Reveals Allosteric Regulation of Nucleosome Interaction

, , , , , & ORCID Icon show all
Article: e00170-22 | Received 29 Apr 2022, Accepted 08 Sep 2022, Published online: 24 Feb 2023

REFERENCES

  • Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:693–705. https://doi.org/10.1016/j.cell.2007.02.005.
  • Zentner GE, Henikoff S. 2013. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266. https://doi.org/10.1038/nsmb.2470.
  • Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293:1074–1080. https://doi.org/10.1126/science.1063127.
  • Yun M, Wu J, Workman JL, Li B. 2011. Readers of histone modifications. Cell Res 21:564–578. https://doi.org/10.1038/cr.2011.42.
  • Lennartsson A, Ekwall K. 2009. Histone modification patterns and epigenetic codes. Biochim Biophys Acta 1790:863–868. https://doi.org/10.1016/j.bbagen.2008.12.006.
  • Church MC, Fleming AB. 2018. A role for histone acetylation in regulating transcription elongation. Transcription 9:225–232. https://doi.org/10.1080/21541264.2017.1394423.
  • van Attikum H, Gasser SM. 2009. Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 19:207–217. https://doi.org/10.1016/j.tcb.2009.03.001.
  • Murr R, Loizou JI, Yang Y-G, Cuenin C, Li H, Wang Z-Q, Herceg Z. 2006. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8:91–99. https://doi.org/10.1038/ncb1343.
  • Wilkins BJ, Rall NA, Ostwal Y, Kruitwagen T, Hiragami-Hamada K, Winkler M, Barral Y, Fischle W, Neumann H. 2014. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80. https://doi.org/10.1126/science.1244508.
  • Cheung P, Allis CD, Sassone-Corsi P. 2000. Signaling to chromatin through histone modifications. Cell 103:263–271. https://doi.org/10.1016/S0092-8674(00)00118-5.
  • Allfrey VG, Faulkner R, Mirsky AE. 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794. https://doi.org/10.1073/pnas.51.5.786.
  • Smolle M, Workman JL. 2013. Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta 1829:84–97. https://doi.org/10.1016/j.bbagrm.2012.08.008.
  • Doyon Y, Côté J. 2004. The highly conserved and multifunctional NuA4 HAT complex. Curr Opin Genet Dev 14:147–154. https://doi.org/10.1016/j.gde.2004.02.009.
  • Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia W-J, Anderson S, Yates J, Washburn MP, Workman JL. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–592. https://doi.org/10.1016/j.cell.2005.10.023.
  • Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. 2005. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280:17732–17736. https://doi.org/10.1074/jbc.M500796200.
  • Leung CS, Douglass SM, Morselli M, Obusan MB, Pavlyukov MS, Pellegrini M, Johnson TL. 2019. H3K36 methylation and the chromodomain protein eaf3 are required for proper cotranscriptional spliceosome assembly. Cell Rep 27:3760–3769.e4. https://doi.org/10.1016/j.celrep.2019.05.100.
  • Woo H, Dam Ha S, Lee SB, Buratowski S, Kim T. 2017. Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp Mol Med 49:e326. https://doi.org/10.1038/emm.2017.19.
  • DiFiore JV, Ptacek TS, Wang Y, Li B, Simon JM, Strahl BD. 2020. Unique and shared roles for histone H3K36 methylation states in transcription regulation functions. Cell Rep 31:107751. https://doi.org/10.1016/j.celrep.2020.107751.
  • Ruan C, Lee C-H, Cui H, Li S, Li B. 2015. Nucleosome contact triggers conformational changes of Rpd3S driving high-affinity H3K36me nucleosome engagement. Cell Rep 10:204–215. https://doi.org/10.1016/j.celrep.2014.12.027.
  • Ruan C, Cui H, Lee C-H, Li S, Li B. 2016. Homodimeric PHD domain-containing Rco1 subunit constitutes a critical interaction hub within the Rpd3S histone deacetylase complex. J Biol Chem 291:5428–5438. https://doi.org/10.1074/jbc.M115.703637.
  • Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL. 2007. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316:1050–1054. https://doi.org/10.1126/science.1139004.
  • Mitchell L, Lambert J-P, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, Baetz K. 2008. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 28:2244–2256. https://doi.org/10.1128/MCB.01653-07.
  • Bhat W, Ahmad S, Côté J. 2015. TINTIN, at the interface of chromatin, transcription elongation, and mRNA processing. RNA Biol 12:486–489. https://doi.org/10.1080/15476286.2015.1026032.
  • Cheng X, Côté J. 2014. A new companion of elongating RNA Polymerase II: TINTIN, an independent sub-module of NuA4/TIP60 for nucleosome transactions. Transcription 5:e995571. https://doi.org/10.1080/21541264.2014.995571.
  • Rossetto D, Cramet M, Wang AY, Steunou A-L, Lacoste N, Schulze JM, Côté V, Monnet-Saksouk J, Piquet S, Nourani A, Kobor MS, Côté J. 2014. Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling. EMBO J 33:1397–1415. https://doi.org/10.15252/embj.201386433.
  • Wang X, Ahmad S, Zhang Z, Côté J, Cai G. 2018. Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex. Nat Commun 9:1147. https://doi.org/10.1038/s41467-018-03504-5.
  • Sathianathan A, Ravichandran P, Lippi JM, Cohen L, Messina A, Shaju S, Swede MJ, Ginsburg DS. 2016. The Eaf3/5/7 subcomplex stimulates NuA4 interaction with methylated histone H3 Lys-36 and RNA polymerase II. J Biol Chem 291:21195–21207. https://doi.org/10.1074/jbc.M116.718742.
  • Weissmann F, Peters J-M. 2018. Expressing multi-subunit complexes using biGBac. Methods Mol Biol 1764:329–343. https://doi.org/10.1007/978-1-4939-7759-8_21.
  • Setiaputra D, Ahmad S, Dalwadi U, Steunou A-L, Lu S, Ross JD, Dong M-Q, Côté J, Yip CK. 2018. Molecular architecture of the essential yeast histone acetyltransferase complex nua4 redefines its multimodularity. Mol Cell Biol 38:e00570-17. https://doi.org/10.1128/MCB.00570-17.
  • Xie T, Zmyslowski AM, Zhang Y, Radhakrishnan I. 2015. Structural basis for multi-specificity of MRG domains. Structure 23:1049–1057. https://doi.org/10.1016/j.str.2015.03.020.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2.
  • Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making protein folding accessible to all. Nat Methods 19:679–682. https://doi.org/10.1038/s41592-022-01488-1.
  • Xu C, Cui G, Botuyan MV, Mer G. 2008. Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16:1740–1750. https://doi.org/10.1016/j.str.2008.08.008.
  • Lowary PT, Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42. https://doi.org/10.1006/jmbi.1997.1494.
  • Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E, Uchtenhagen H, Urlaub H, Herzog F, Peters JM, Poerschke D, Lührmann R, Stark H. 2008. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5:53–55. https://doi.org/10.1038/nmeth1139.
  • Sun B, Hong J, Zhang P, Dong X, Shen X, Lin D, Ding J. 2008. Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J Biol Chem 283:36504–36512. https://doi.org/10.1074/jbc.M806564200.
  • Erdős G, Pajkos M, Dosztányi Z. 2021. IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res 49:W297–W303. https://doi.org/10.1093/nar/gkab408.
  • Wei M-T, Chang Y-C, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP. 2020. Nucleated transcriptional condensates amplify gene expression. Nat Cell Biol 22:1187–1196. https://doi.org/10.1038/s41556-020-00578-6.
  • Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, Marie-Nelly H, McSwiggen DT, Kokic G, Dailey GM, Cramer P, Darzacq X, Zweckstetter M. 2018. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol 25:833–840. https://doi.org/10.1038/s41594-018-0112-y.
  • Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:13–23. https://doi.org/10.1016/j.cell.2017.02.007.
  • Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958. https://doi.org/10.1126/science.aar3958.
  • Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q. 2018. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558:318–323. https://doi.org/10.1038/s41586-018-0174-3.
  • Lee C-H, Yu J-R, Kumar S, Jin Y, LeRoy G, Bhanu N, Kaneko S, Garcia BA, Hamilton AD, Reinberg D. 2018. Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol Cell 70:422–434.e6. https://doi.org/10.1016/j.molcel.2018.03.020.
  • Setiaputra DT, Yip CK. 2017. Characterizing the molecular architectures of chromatin-modifying complexes. Biochim Biophys Acta Proteins Proteom 1865:1613–1622. https://doi.org/10.1016/j.bbapap.2017.06.018.
  • McGinty RK, Tan S. 2021. Principles of nucleosome recognition by chromatin factors and enzymes. Curr Opin Struct Biol 71:16–26. https://doi.org/10.1016/j.sbi.2021.05.006.
  • Xu P, Li C, Chen Z, Jiang S, Fan S, Wang J, Dai J, Zhu P, Chen Z. 2016. The NuA4 core complex acetylates nucleosomal histone H4 through a double recognition mechanism. Mol Cell 63:965–975. https://doi.org/10.1016/j.molcel.2016.07.024.
  • Berndsen CE, Selleck W, McBryant SJ, Hansen JC, Tan S, Denu JM. 2007. Nucleosome recognition by the Piccolo NuA4 histone acetyltransferase complex. Biochemistry 46:2091–2099. https://doi.org/10.1021/bi602366n.
  • Weissmann F, Petzold G, VanderLinden R, Huis In 't Veld PJ, Brown NG, Lampert F, Westermann S, Stark H, Schulman BA, Peters J-M. 2016. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc Natl Acad Sci USA 113:E2564-9. https://doi.org/10.1073/pnas.1604935113.
  • Luger K, Rechsteiner TJ, Richmond TJ. 1999. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:3–19. https://doi.org/10.1016/s0076-6879(99)04003-3.
  • Simon MD. 2010. Installation of site-specific methylation into histones using methyl lysine analogs. Curr Protoc Mol Biol Chapter 21:18.1–18.10.
  • Rohou A, Grigorieff N. 2015. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221. https://doi.org/10.1016/j.jsb.2015.08.008.
  • Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH. 2018. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7:e42166. https://doi.org/10.7554/eLife.42166.
  • Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. https://doi.org/10.1038/nmeth.4169.
  • Stariha JTB, Hoffmann RM, Hamelin DJ, Burke JE. 2021. Probing protein-membrane interactions and dynamics using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Methods Mol Biol 2263:465–485. https://doi.org/10.1007/978-1-0716-1197-5_22.
  • Dobbs JM, Jenkins ML, Burke JE. 2020. Escherichia coli and Sf9 contaminant databases to increase efficiency of tandem mass spectrometry peptide identification in structural mass spectrometry experiments. J Am Soc Mass Spectrom 31:2202–2209. https://doi.org/10.1021/jasms.0c00283.
  • Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, Bou-Assaf GM, Engen JR, Englander SW, Faber J, Garlish R, Griffin PR, Gross ML, Guttman M, Hamuro Y, Heck AJR, Houde D, Iacob RE, Jørgensen TJD, Kaltashov IA, Klinman JP, Konermann L, Man P, Mayne L, Pascal BD, Reichmann D, Skehel M, Snijder J, Strutzenberg TS, Underbakke ES, Wagner C, Wales TE, Walters BT, Weis DD, Wilson DJ, Wintrode PL, Zhang Z, Zheng J, Schriemer DC, Rand KD. 2019. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods 16:595–602. https://doi.org/10.1038/s41592-019-0459-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.