99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Truncated Form of the p27 Cyclin-Dependent Kinase Inhibitor Translated from Pre-mRNA Causes G2-Phase Arrest

ORCID Icon, , , &
Article: e00217-22 | Received 07 Jun 2022, Accepted 28 Sep 2022, Published online: 24 Feb 2023

REFERENCES

  • Grzybowska EA. 2012. Human intronless genes: functional groups, associated diseases, evolution, and mRNA processing in absence of splicing. Biochem Biophys Res Commun 424:1–6. https://doi.org/10.1016/j.bbrc.2012.06.092.
  • Wahl MC, Will CL, Luhrmann R. 2009. The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718. https://doi.org/10.1016/j.cell.2009.02.009.
  • Papasaikas P, Valcarcel J. 2016. The spliceosome: the ultimate RNA chaperone and sculptor. Trends Biochem Sci 41:33–45. https://doi.org/10.1016/j.tibs.2015.11.003.
  • Chhipi-Shrestha JK, Schneider-Poetsch T, Suzuki T, Mito M, Khan K, Dohmae N, Iwasaki S, Yoshida M. 2021. Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns. Cell Chem Biol 29:259–275. https://doi.org/10.1016/j.chembiol.2021.07.015.
  • Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, Ramsay AJ, Bea S, Pinyol M, Martinez-Trillos A, Lopez-Guerra M, Colomer D, Navarro A, Baumann T, Aymerich M, Rozman M, Delgado J, Gine E, Hernandez JM, Gonzalez-Diaz M, Puente DA, Velasco G, Freije JM, Tubio JM, Royo R, Gelpi JL, Orozco M, Pisano DG, Zamora J, Vazquez M, Valencia A, Himmelbauer H, Bayes M, Heath S, Gut M, Gut I, Estivill X, Lopez-Guillermo A, Puente XS, Campo E, Lopez-Otin C. 2011. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44:47–52. https://doi.org/10.1038/ng.1032.
  • Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M, Fangazio M, Vaisitti T, Monti S, Chiaretti S, Guarini A, Del Giudice I, Cerri M, Cresta S, Deambrogi C, Gargiulo E, Gattei V, Forconi F, Bertoni F, Deaglio S, Rabadan R, Pasqualucci L, Foa R, Dalla-Favera R, Gaidano G. 2011. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 118:6904–6908. https://doi.org/10.1182/blood-2011-08-373159.
  • Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ. 2011. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365:2497–2506. https://doi.org/10.1056/NEJMoa1109016.
  • Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann WK, Miyawaki S, Sugano S, Haferlach C, Koeffler HP, Shih LY, Haferlach T, Chiba S, Nakauchi H, Miyano S, Ogawa S. 2011. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69. https://doi.org/10.1038/nature10496.
  • Cooper TA, Wan L, Dreyfuss G. 2009. RNA and disease. Cell 136:777–793. https://doi.org/10.1016/j.cell.2009.02.011.
  • Bousquet-Antonelli C, Presutti C, Tollervey D. 2000. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102:765–775. https://doi.org/10.1016/s0092-8674(00)00065-9.
  • Dziembowski A, Ventura AP, Rutz B, Caspary F, Faux C, Halgand F, Laprevote O, Seraphin B. 2004. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J 23:4847–4856. https://doi.org/10.1038/sj.emboj.7600482.
  • Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U. 2004. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116:63–73. https://doi.org/10.1016/s0092-8674(03)01026-2.
  • Rutz B, Seraphin B. 2000. A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. EMBO J 19:1873–1886. https://doi.org/10.1093/emboj/19.8.1873.
  • Kurosaki T, Popp MW, Maquat LE. 2019. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 20:406–420. https://doi.org/10.1038/s41580-019-0126-2.
  • Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, Watanabe H, Kitahara T, Yoshida T, Nakajima H, Tani T, Horinouchi S, Yoshida M. 2007. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3:576–583. https://doi.org/10.1038/nchembio.2007.18.
  • Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, Ishihama Y, Iwata M, Mizui Y. 2007. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3:570–575. https://doi.org/10.1038/nchembio.2007.16.
  • Mizui Y, Sakai T, Iwata M, Uenaka T, Okamoto K, Shimizu H, Yamori T, Yoshimatsu K, Asada M. 2004. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J Antibiot (Tokyo) 57:188–196. https://doi.org/10.7164/antibiotics.57.188.
  • Nakajima H, Hori Y, Terano H, Okuhara M, Manda T, Matsumoto S, Shimomura K. 1996. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot (Tokyo) 49:1204–1211. https://doi.org/10.7164/antibiotics.49.1204.
  • Corrionero A, Minana B, Valcarcel J. 2011. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 25:445–459. https://doi.org/10.1101/gad.2014311.
  • Folco EG, Coil KE, Reed R. 2011. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev 25:440–444. https://doi.org/10.1101/gad.2009411.
  • Cretu C, Gee P, Liu X, Agrawal A, Nguyen TV, Ghosh AK, Cook A, Jurica M, Larsen NA, Pena V. 2021. Structural basis of intron selection by U2 snRNP in the presence of covalent inhibitors. Nat Commun 12:4491. https://doi.org/10.1038/s41467-021-24741-1.
  • Satoh T, Kaida D. 2016. Upregulation of p27 cyclin-dependent kinase inhibitor and a C-terminus truncated form of p27 contributes to G1 phase arrest. Sci Rep 6:27829. https://doi.org/10.1038/srep27829.
  • Kaida D, Shida K. 2022. Spliceostatin A stabilizes CDKN1B mRNA through the 3' UTR. Biochem Biophys Res Commun 608:39–44. https://doi.org/10.1016/j.bbrc.2022.03.085.
  • Kikuchi K, Kaida D. 2021. CCNE1 and E2F1 partially suppress G1 phase arrest caused by spliceostatin A treatment. Int J Mol Sci 22:11623. https://doi.org/10.3390/ijms222111623.
  • Hochegger H, Takeda S, Hunt T. 2008. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 9:910–916. https://doi.org/10.1038/nrm2510.
  • Lim S, Kaldis P. 2013. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093. https://doi.org/10.1242/dev.091744.
  • Furuno N, den Elzen N, Pines J. 1999. Human cyclin A is required for mitosis until mid prophase. J Cell Biol 147:295–306. https://doi.org/10.1083/jcb.147.2.295.
  • Lindqvist A, Rodriguez-Bravo V, Medema RH. 2009. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 185:193–202. https://doi.org/10.1083/jcb.200812045.
  • Ohi R, Gould KL. 1999. Regulating the onset of mitosis. Curr Opin Cell Biol 11:267–273. https://doi.org/10.1016/s0955-0674(99)80036-2.
  • den Elzen N, Pines J. 2001. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 153:121–136. https://doi.org/10.1083/jcb.153.1.121.
  • Erlandsson F, Linnman C, Ekholm S, Bengtsson E, Zetterberg A. 2000. A detailed analysis of cyclin A accumulation at the G(1)/S border in normal and transformed cells. Exp Cell Res 259:86–95. https://doi.org/10.1006/excr.2000.4889.
  • Geley S, Kramer E, Gieffers C, Gannon J, Peters JM, Hunt T. 2001. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol 153:137–148. https://doi.org/10.1083/jcb.153.1.137.
  • Pines J, Hunter T. 1990. Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature 346:760–763. https://doi.org/10.1038/346760a0.
  • Yam CH, Fung TK, Poon RY. 2002. Cyclin A in cell cycle control and cancer. Cell Mol Life Sci 59:1317–1326. https://doi.org/10.1007/s00018-002-8510-y.
  • Acquaviva C, Pines J. 2006. The anaphase-promoting complex/cyclosome: APC/C. J Cell Sci 119:2401–2404. https://doi.org/10.1242/jcs.02937.
  • Fung TK, Poon RY. 2005. A roller coaster ride with the mitotic cyclins. Semin Cell Dev Biol 16:335–342. https://doi.org/10.1016/j.semcdb.2005.02.014.
  • van Leuken R, Clijsters L, Wolthuis R. 2008. To cell cycle, swing the APC/C. Biochim Biophys Acta 1786:49–59. https://doi.org/10.1016/j.bbcan.2008.05.002.
  • McGowan CH, Russell P. 1993. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12:75–85. https://doi.org/10.1002/j.1460-2075.1993.tb05633.x.
  • Norbury C, Blow J, Nurse P. 1991. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J 10:3321–3329. https://doi.org/10.1002/j.1460-2075.1991.tb04896.x.
  • Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW. 1991. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67:197–211. https://doi.org/10.1016/0092-8674(91)90583-k.
  • Sherr CJ, Roberts JM. 1999. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512. https://doi.org/10.1101/gad.13.12.1501.
  • Toyoshima H, Hunter T. 1994. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78:67–74. https://doi.org/10.1016/0092-8674(94)90573-8.
  • Hengst L, Reed SI. 1996. Translational control of p27Kip1 accumulation during the cell cycle. Science 271:1861–1864. https://doi.org/10.1126/science.271.5257.1861.
  • Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, Kitagawa M, Iemura S, Natsume T, Nakayama KI. 2004. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 6:661–672. https://doi.org/10.1016/s1534-5807(04)00131-5.
  • Cadart C, Zlotek-Zlotkiewicz E, Le Berre M, Piel M, Matthews HK. 2014. Exploring the function of cell shape and size during mitosis. Dev Cell 29:159–169. https://doi.org/10.1016/j.devcel.2014.04.009.
  • Morla AO, Draetta G, Beach D, Wang JY. 1989. Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell 58:193–203. https://doi.org/10.1016/0092-8674(89)90415-7.
  • Podmirseg SR, Jakel H, Ranches GD, Kullmann MK, Sohm B, Villunger A, Lindner H, Hengst L. 2016. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene 35:4580–4590. https://doi.org/10.1038/onc.2015.524.
  • Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985.
  • Girard C, Will CL, Peng J, Makarov EM, Kastner B, Lemm I, Urlaub H, Hartmuth K, Luhrmann R. 2012. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat Commun 3:994. https://doi.org/10.1038/ncomms1998.
  • Wang C, Chua K, Seghezzi W, Lees E, Gozani O, Reed R. 1998. Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. Genes Dev 12:1409–1414. https://doi.org/10.1101/gad.12.10.1409.
  • Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M. 1999. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 13:1181–1189. https://doi.org/10.1101/gad.13.9.1181.
  • Yoshida Y, Saeki Y, Murakami A, Kawawaki J, Tsuchiya H, Yoshihara H, Shindo M, Tanaka K. 2015. A comprehensive method for detecting ubiquitinated substrates using TR-TUBE. Proc Natl Acad Sci USA 112:4630–4635. https://doi.org/10.1073/pnas.1422313112.
  • Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS. 2009. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10:1250–1258. https://doi.org/10.1038/embor.2009.192.
  • Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S, Yoshida M, Nakayama K, Nakayama KI. 2004. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 6:1229–1235. https://doi.org/10.1038/ncb1194.
  • Hara T, Kamura T, Kotoshiba S, Takahashi H, Fujiwara K, Onoyama I, Shirakawa M, Mizushima N, Nakayama KI. 2005. Role of the UBL-UBA protein KPC2 in degradation of p27 at G1 phase of the cell cycle. Mol Cell Biol 25:9292–9303. https://doi.org/10.1128/MCB.25.21.9292-9303.2005.
  • Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S, Nakayama K. 2001. Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem 276:48937–48943. https://doi.org/10.1074/jbc.M107274200.
  • Yoshimoto R, Kaida D, Furuno M, Burroughs AM, Noma S, Suzuki H, Kawamura Y, Hayashizaki Y, Mayeda A, Yoshida M. 2017. Global analysis of pre-mRNA subcellular localization following splicing inhibition by spliceostatin A. RNA 23:47–57. https://doi.org/10.1261/rna.058065.116.
  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062.
  • Nakajima H, Sato B, Fujita T, Takase S, Terano H, Okuhara M. 1996. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 49:1196–1203. https://doi.org/10.7164/antibiotics.49.1196.
  • Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, Agrawal AA, Caleb B, Csibi A, Sean E, Fekkes P, Karr C, Klimek V, Lai G, Lee L, Kumar P, Lee SC, Liu X, Mackenzie C, Meeske C, Mizui Y, Padron E, Park E, Pazolli E, Peng S, Prajapati S, Taylor J, Teng T, Wang J, Warmuth M, Yao H, Yu L, Zhu P, Abdel-Wahab O, Smith PG, Buonamici S. 2018. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med 24:497–504. https://doi.org/10.1038/nm.4493.
  • Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, Faulkner N, Pilat MJ, O'Brien J, LoRusso P. 2014. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32:436–444. https://doi.org/10.1007/s10637-013-0046-5.
  • Shumilov E, Flach J, Kohlmann A, Banz Y, Bonadies N, Fiedler M, Pabst T, Bacher U. 2018. Current status and trends in the diagnostics of AML and MDS. Blood Rev 32:508–519. https://doi.org/10.1016/j.blre.2018.04.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.