120
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Arginylation Regulates Cytoskeleton Organization and Cell Division and Affects Mitochondria in Fission Yeast

& ORCID Icon
Article: e00261-22 | Received 06 Jul 2022, Accepted 20 Sep 2022, Published online: 24 Feb 2023

REFERENCES

  • Kashina AS. 2015. Protein arginylation: over 50 years of discovery. Methods Mol Biol 1337:1–11. https://doi.org/10.1007/978-1-4939-2935-1_1.
  • Kashina A. 2014. Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle. Anat Rec (Hoboken) 297:1630–1636. https://doi.org/10.1002/ar.22969.
  • Rai R, Kashina A. 2005. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Proc Natl Acad Sci USA 102:10123–10128. https://doi.org/10.1073/pnas.0504500102.
  • Kwon YT, Kashina AS, Varshavsky A. 1999. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol Cell Biol 19:182–193. and https://doi.org/10.1128/MCB.19.1.182.
  • Graciet E, Walter F, Ó'Maoiléidigh DS, Pollmann S, Meyerowitz EM, Varshavsky A, Wellmer F. 2009. The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. Proc Natl Acad Sci USA 106:13618–13623. https://doi.org/10.1073/pnas.0906404106.
  • Kwon YT, Kashina AS, Davydov IV, Hu R-G, An JY, Seo JW, Du F, Varshavsky A. 2002. An essential role of N-terminal arginylation in cardiovascular development. Science 297:96–99. https://doi.org/10.1126/science.1069531.
  • Kurosaka S, Leu NA, Zhang F, Bunte R, Saha S, Wang J, Guo C, He W, Kashina A. 2010. Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet 6:e1000878. https://doi.org/10.1371/journal.pgen.1000878.
  • Leite FS, Minozzo FC, Kalganov A, Cornachione AS, Cheng Y-S, Leu NA, Han X, Saripalli C, Yates JR III, Granzier H, Kashina AS, Rassier DE. 2016. Reduced passive force in skeletal muscles lacking protein arginylation. Am J Physiol Cell Physiol 310:C127–C135. https://doi.org/10.1152/ajpcell.00269.2015.
  • de Souza Leite F, Kashina A, Rassier DE. 2016. Posttranslational arginylation regulates striated muscle function. Exerc Sport Sci Rev 44:98–103. https://doi.org/10.1249/JES.0000000000000079.
  • Wang J, Han X, Leu NA, Sterling S, Kurosaka S, Fina M, Lee VM, Dong DW, Yates JR III, Kashina A. 2017. Protein arginylation targets alpha synuclein, facilitates normal brain health, and prevents neurodegeneration. Sci Rep 7:11323. https://doi.org/10.1038/s41598-017-11713-z.
  • Cornachione AS, Leite FS, Wang J, Leu NA, Kalganov A, Volgin D, Han X, Xu T, Cheng Y-S, Yates JRR III, Rassier DE, Kashina A. 2014. Arginylation of myosin heavy chain regulates skeletal muscle strength. Cell Rep 8:470–476. https://doi.org/10.1016/j.celrep.2014.06.019.
  • Zhang F, Saha S, Kashina A. 2012. Arginylation-dependent regulation of a proteolytic product of talin is essential for cell-cell adhesion. J Cell Biol 197:819–836. https://doi.org/10.1083/jcb.201112129.
  • Saha S, Wong CCL, Xu T, Namgoong S, Zebroski H, Yates JR III, Kashina A. 2011. Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo. Chem Biol 18:1369–1378. https://doi.org/10.1016/j.chembiol.2011.08.019.
  • Wong CCL, Xu T, Rai R, Bailey AO, Yates JR III, Wolf YI, Zebroski H, Kashina A. 2007. Global analysis of posttranslational protein arginylation. PLoS Biol 5:e258. https://doi.org/10.1371/journal.pbio.0050258.
  • Balzi E, Choder M, Chen WN, Varshavsky A, Goffeau A. 1990. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J Biol Chem 265:7464–7471. https://doi.org/10.1016/S0021-9258(19)39136-7.
  • Varshavsky A. 1997. The N-end rule pathway of protein degradation. Genes Cells 2:13–28. https://doi.org/10.1046/j.1365-2443.1997.1020301.x.
  • Van V, Smith AT. 2020. ATE1-mediated post-translational arginylation is an essential regulator of eukaryotic cellular homeostasis. ACS Chem Biol 15:3073–3085. https://doi.org/10.1021/acschembio.0c00677.
  • Wiley DJ, D'Urso G, Zhang F. 2020. Posttranslational arginylation enzyme arginyltransferase1 shows genetic interactions with specific cellular pathways in vivo. Front Physiol 11:427. https://doi.org/10.3389/fphys.2020.00427.
  • Deka K, Saha S. 2021. Heat stress induced arginylation of HuR promotes alternative polyadenylation of Hsp70.3 by regulating HuR stability and RNA binding. Cell Death Differ 28:730–747. https://doi.org/10.1038/s41418-020-00619-5.
  • Deka K, Singh A, Chakraborty S, Mukhopadhyay R, Saha S. 2016. Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts. Cell Death Discov 2:16074. https://doi.org/10.1038/cddiscovery.2016.74.
  • Kumar A, Birnbaum MD, Patel DM, Morgan WM, Singh J, Barrientos A, Zhang F. 2016. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response. Cell Death Dis 7:e2378. https://doi.org/10.1038/cddis.2016.284.
  • Zhao Y, Lieberman HB. 1995. Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA Cell Biol 14:359–371. https://doi.org/10.1089/dna.1995.14.359.
  • Loiodice I, Staub J, Setty TG, Nguyen N-PT, Paoletti A, Tran PT. 2005. Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol Biol Cell 16:1756–1768. https://doi.org/10.1091/mbc.e04-10-0899.
  • Nabeshima K, Nakagawa T, Straight AF, Murray A, Chikashige Y, Yamashita YM, Hiraoka Y, Yanagida M. 1998. Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol Biol Cell 9:3211–3225. https://doi.org/10.1091/mbc.9.11.3211.
  • Tran PT, Marsh L, Doye V, Inoué S, Chang F. 2001. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 153:397–411. https://doi.org/10.1083/jcb.153.2.397.
  • Karakozova M, Kozak M, Wong CCL, Bailey AO, Yates JR III, Mogilner A, Zebroski H, Kashina A. 2006. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 313:192–196. https://doi.org/10.1126/science.1129344.
  • Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R. 2008. LifeAct: a versatile marker to visualize F-actin. Nat Methods 5:605–607. https://doi.org/10.1038/nmeth.1220.
  • Arai R, Mabuchi I. 2002. F-actin ring formation and the role of F-actin cables in the fission yeast Schizosaccharomyces pombe. J Cell Sci 115:887–898. https://doi.org/10.1242/jcs.115.5.887.
  • Martin SG, Arkowitz RA. 2014. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 38:228–253. https://doi.org/10.1111/1574-6976.12055.
  • EauClaire S, Guo W. 2003. Conservation and specialization. The role of the exocyst in neuronal exocytosis. Neuron 37:369–370. https://doi.org/10.1016/S0896-6273(03)00059-X.
  • He B, Guo W. 2009. The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21:537–542. https://doi.org/10.1016/j.ceb.2009.04.007.
  • Lacy MM, Ma R, Ravindra NG, Berro J. 2018. Molecular mechanisms of force production in clathrin-mediated endocytosis. FEBS Lett 592:3586–3605. https://doi.org/10.1002/1873-3468.13192.
  • Zhu Y, Wu B, Guo W. 2019. The role of Exo70 in exocytosis and beyond. Small GTPases 10:331–335.
  • Etienne-Manneville S. 2004. Cdc42—the centre of polarity. J Cell Sci 117:1291–1300. https://doi.org/10.1242/jcs.01115.
  • Rincon SA, Estravis M, Perez P. 2014. Cdc42 regulates polarized growth and cell integrity in fission yeast. Biochem Soc Trans 42:201–205. https://doi.org/10.1042/BST20130155.
  • Chiou J-G, Balasubramanian MK, Lew DJ. 2017. Cell polarity in yeast. Annu Rev Cell Dev Biol 33:77–101. https://doi.org/10.1146/annurev-cellbio-100616-060856.
  • Estravis M, Rincon S, Perez P. 2012. Cdc42 regulation of polarized traffic in fission yeast. Commun Integr Biol 5:370–373. https://doi.org/10.4161/cib.19977.
  • Fukuda T, Ebi Y, Saigusa T, Furukawa K, Yamashita S-i, Inoue K, Kobayashi D, Yoshida Y, Kanki T. 2020. Atg43 tethers isolation membranes to mitochondria to promote starvation-induced mitophagy in fission yeast. eLife 9:e61245. https://doi.org/10.7554/eLife.61245.
  • Wu J-Q, Pollard TD. 2005. Counting cytokinesis proteins globally and locally in fission yeast. Science 310:310–314. https://doi.org/10.1126/science.1113230.
  • Wang J, Yates JR III, Kashina A. 2019. Biochemical analysis of protein arginylation. Methods Enzymol 626:89–113. https://doi.org/10.1016/bs.mie.2019.07.028.
  • Xu T, Wong CCL, Kashina A, Yates JR III. 2009. Identification of N-terminally arginylated proteins and peptides by mass spectrometry. Nat Protoc 4:325–332. https://doi.org/10.1038/nprot.2008.248.
  • Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI. 1999. A sampling of the yeast proteome. Mol Cell Biol 19:7357–7368. https://doi.org/10.1128/MCB.19.11.7357.
  • Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A. 2010. Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell 21:1350–1361. https://doi.org/10.1091/mbc.e09-09-0829.
  • McNally FJ, Roll-Mecak A. 2018. Microtubule-severing enzymes: from cellular functions to molecular mechanism. J Cell Biol 217:4057–4069. https://doi.org/10.1083/jcb.201612104.
  • Pidoux AL, LeDizet M, Cande WZ. 1996. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. Mol Biol Cell 7:1639–1655. https://doi.org/10.1091/mbc.7.10.1639.
  • Marks J, Hagan IM, Hyams JS. 1986. Growth polarity and cytokinesis in fission yeast: the role of the cytoskeleton. J Cell Sci Suppl 5:229–241. https://doi.org/10.1242/jcs.1986.supplement_5.15.
  • Sawin KE, Tran PT. 2006. Cytoplasmic microtubule organization in fission yeast. Yeast 23:1001–1014. https://doi.org/10.1002/yea.1404.
  • Jiang C, Moorthy BT, Patel DM, Kumar A, Morgan WM, Alfonso B, Huang J, Lampidis TJ, Isom DG, Barrientos A, Fontanesi F, Zhang F. 2020. Regulation of mitochondrial respiratory chain complex levels, organization, and function by arginyltransferase 1. Front Cell Dev Biol 8:603688. https://doi.org/10.3389/fcell.2020.603688.
  • Heo AJ, Kim SB, Ji CH, Han D, Lee SJ, Lee SH, Lee MJ, Lee JS, Ciechanover A, Kim BY, Kwon YT. 2021. The N-terminal cysteine is a dual sensor of oxygen and oxidative stress. Proc Natl Acad Sci USA 118:e2107993118. https://doi.org/10.1073/pnas.2107993118.
  • Okamoto K, Shaw JM. 2005. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536. https://doi.org/10.1146/annurev.genet.38.072902.093019.
  • Westermann B. 2010. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884. https://doi.org/10.1038/nrm3013.
  • Moreno S, Klar A, Nurse P. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823. https://doi.org/10.1016/0076-6879(91)94059-l.
  • Tran PT, Paoletti A, Chang F. 2004. Imaging green fluorescent protein fusions in living fission yeast cells. Methods 33:220–225. https://doi.org/10.1016/j.ymeth.2003.11.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.