137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regulation of Sox8 through lncRNA Mrhl-Mediated Chromatin Looping in Mouse Spermatogonia

, , & ORCID Icon
Article: e00475-21 | Received 05 Oct 2021, Accepted 26 Feb 2022, Published online: 27 Feb 2023

REFERENCES

  • O'Bryan M, Takada S, Kennedy C, Scott G, Harada S, Ray M, Dai Q, Wilhelm D, de Kretser D, Eddy E, Koopman P, Mishina Y. 2008. Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Dev Biol 316:359–370. https://doi.org/10.1016/j.ydbio.2008.01.042.
  • Barrionuevo F, Scherer G. 2010. SOX E genes: Sox9 and Sox8 in mammalian testis development. Int J Biochem Cell Biol 42:433–436. https://doi.org/10.1016/j.biocel.2009.07.015.
  • Barrionuevo F, Hurtado A, Kim G, Real F, Bakkali M, Kopp J, Sander M, Scherer G, Burgos M, Jiménez R. 2016. Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration. Elife 5:e15635. https://doi.org/10.7554/eLife.15635.
  • Richardson N, Gillot I, Gregoire E, Youssef S, de Rooij D, de Bruin A, De Cian M, Chaboissier M. 2020. Sox8 and Sox9 act redundantly for ovarian-to-testicular fate reprogramming in the absence of R-spondin1 in mouse sex reversals. Elife 9:e53972. https://doi.org/10.7554/eLife.53972.
  • Nishant K, Ravishankar H, Rao M. 2004. Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol Cell Biol 24:5620–5634. https://doi.org/10.1128/MCB.24.12.5620-5634.2004.
  • Akhade V, Arun G, Donakonda S, Satyanarayana Rao M. 2014. Genome wide chromatin occupancy of Mrhl RNA and its role in gene regulation in mouse spermatogonial cells. RNA Biol 11:1262–1279. https://doi.org/10.1080/15476286.2014.996070.
  • Kataruka S, Akhade V, Kayyar B, Rao M. 2017. Mrhl long noncoding RNA mediates meiotic commitment of mouse spermatogonial cells by regulating Sox8 expression. Mol Cell Biol 37:e00632-16. https://doi.org/10.1128/MCB.00632-16.
  • Akhade V, Dighe S, Kataruka S, Rao M. 2016. Mechanism of Wnt signaling induced down regulation of Mrhl long non-coding RNA in mouse spermatogonial cells. Nucleic Acids Res 44:387–401. https://doi.org/10.1093/nar/gkv1023.
  • Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B, Mitra S, Mohammed A, James A, Hoberg E, Moustakas A, Gyllensten U, Jones S, Gustafsson C, Sims A, Westerlund F, Gorab E, Kanduri C. 2015. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nat Commun 6:7743. https://doi.org/10.1038/ncomms8743.
  • Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, Schmitt N, Dold A, Ginsberg D, Grummt I. 2015. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol Cell 60:626–636. https://doi.org/10.1016/j.molcel.2015.10.001.
  • O'Leary VB, Ovsepian SV, Carrascosa LG, Buske FA, Radulovic V, Niyazi M, Moertl S, Trau M, Atkinson MJ, Anastasov N. 2015. PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep 11:474–485. https://doi.org/10.1016/j.celrep.2015.03.043.
  • Schmitz K, Mayer C, Postepska A, Grummt I. 2010. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269. https://doi.org/10.1101/gad.590910.
  • Grote P, Herrmann B. 2013. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 10:1579–1585. https://doi.org/10.4161/rna.26165.
  • Ong C, Corces V. 2014. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15:234–246. https://doi.org/10.1038/nrg3663.
  • Saldaña-Meyer R, González-Buendía E, Guerrero G, Narendra V, Bonasio R, Recillas-Targa F, Reinberg D. 2014. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53. Genes Dev 28:723–734. https://doi.org/10.1101/gad.236869.113.
  • Saldaña-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jácome-López K, Nora E, Bruneau B, Tsirigos A, Furlan-Magaril M, Skok J, Reinberg D. 2019. RNA interactions are essential for CTCF-mediated genome organization. Mol Cell 76:412–422. https://doi.org/10.1016/j.molcel.2019.08.015.
  • Xiang J, Yin Q, Chen T, Zhang Y, Zhang X, Wu Z, Zhang S, Wang H, Ge J, Lu X, Yang L, Chen L. 2014. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24:513–531. https://doi.org/10.1038/cr.2014.35.
  • Yao H, Brick K, Evrard Y, Xiao T, Camerini-Otero R, Felsenfeld G. 2010. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev 24:2543–2555. https://doi.org/10.1101/gad.1967810.
  • Pal D, Neha C, Bhaduri U, Zenia Z, Dutta S, Chidambaram S, Rao M. 2021. LncRNA Mrhl orchestrates differentiation programs in mouse embryonic stem cells through chromatin mediated regulation. Stem Cell Res 53:102250. https://doi.org/10.1016/j.scr.2021.102250.
  • Gonen N, Futtner C, Wood S, Garcia-Moreno S, Salamone I, Samson S, Sekido R, Poulat F, Maatouk D, Lovell-Badge R. 2018. Sex reversal following deletion of a single distal enhancer of Sox9. Science 360:1469–1473. https://doi.org/10.1126/science.aas9408.
  • Guth S, Bösl M, Sock E, Wegner M. 2010. Evolutionary conserved sequence elements with embryonic enhancer activity in the vicinity of the mammalian Sox8 gene. Int J Biochem Cell Biol 42:465–471. https://doi.org/10.1016/j.biocel.2009.07.008.
  • Garcia-Moreno S, Futtner C, Salamone I, Gonen N, Lovell-Badge R, Maatouk D. 2019. Gonadal supporting cells acquire sex-specific chromatin landscapes during mammalian sex determination. Dev Biol 446:168–179. https://doi.org/10.1016/j.ydbio.2018.12.023.
  • Ogbourne S, Antalis T. 1998. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J 331:1–14. https://doi.org/10.1042/bj3310001.
  • Singh AP, Harada S, Mishina Y. 2009. Downstream genes of Sox8 that would affect adult male fertility. Sex Dev 3:16–25. https://doi.org/10.1159/000200078.
  • Kojima M, de Rooij D, Page D. 2019. Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. Elife 8:e43738. https://doi.org/10.7554/eLife.43738.
  • Kalwa M, Hänzelmann S, Otto S, Kuo C, Franzen J, Joussen S, Fernandez-Rebollo E, Rath B, Koch C, Hofmann A, Lee S, Teschendorff A, Denecke B, Lin Q, Widschwendter M, Weinhold E, Costa I, Wagner W. 2016. The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res 44:10631–10643. https://doi.org/10.1093/nar/gkw802.
  • Blank-Giwojna A, Postepska-Igielska A, Grummt I. 2019. lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators. Cell Rep 26:2904–2915. https://doi.org/10.1016/j.celrep.2019.02.059.
  • Yang Y, Li G. 2020. Post-translational modifications of PRC2: signals directing its activity. Epigenetics Chromatin 13:47. https://doi.org/10.1186/s13072-020-00369-1.
  • Kentepozidou E, Aitken S, Feig C, Stefflova K, Ibarra-Soria X, Odom D, Roller M, Flicek P. 2020. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains. Genome Biol 21:5. https://doi.org/10.1186/s13059-019-1894-x.
  • Essien K, Vigneau S, Apreleva S, Singh L, Bartolomei M, Hannenhalli S. 2009. CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features. Genome Biol 10:R131. https://doi.org/10.1186/gb-2009-10-11-r131.
  • Nishana M, Ha C, Rodriguez-Hernaez J, Ranjbaran A, Chio E, Nora E, Badri S, Kloetgen A, Bruneau B, Tsirigos A, Skok J. 2020. Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biol 21:108. https://doi.org/10.1186/s13059-020-02024-0.
  • Pugacheva E, Kubo N, Loukinov D, Tajmul M, Kang S, Kovalchuk A, Strunnikov A, Zentner G, Ren B, Lobanenkov V. 2020. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Proc Natl Acad Sci USA 117:2020–2031. https://doi.org/10.1073/pnas.1911708117.
  • Marino M, Rega C, Russo R, Valletta M, Gentile M, Esposito S, Baglivo I, De Feis I, Angelini C, Xiao T, Felsenfeld G, Chambery A, Pedone P. 2019. Interactome mapping defines BRG1, a component of the SWI/SNF chromatin remodeling complex, as a new partner of the transcriptional regulator CTCF. J Biol Chem 294:861–873. https://doi.org/10.1074/jbc.RA118.004882.
  • Fisher J, Peterson J, Reimer M, Stelloh C, Pulakanti K, Gerbec Z, Abel A, Strouse J, Strouse C, McNulty M, Malarkannan S, Crispino J, Milanovich S, Rao S. 2016. The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of HoxA7 and HoxA9. Blood 128:1708. https://doi.org/10.1182/blood.V128.22.1708.1708.
  • Wang J, Wang J, Yang L, Zhao C, Wu L, Xu L, Zhang F, Weng Q, Wegner M, Lu Q. 2020. CTCF-mediated chromatin looping in EGR2 regulation and SUZ12 recruitment critical for peripheral myelination and repair. Nat Commun 11:4133. https://doi.org/10.1038/s41467-020-17955-2.
  • Huang D, Petrykowska H, Miller B, Elnitski L, Ovcharenko I. 2019. Identification of human silencers by correlating cross-tissue epigenetic profiles and gene expression. Genome Res 29:657–667. https://doi.org/10.1101/gr.247007.118.
  • Croft B, Ohnesorg T, Hewitt J, Bowles J, Quinn A, Tan J, Corbin V, Pelosi E, van den Bergen J, Sreenivasan R, Knarston I, Robevska G, Vu D, Hutson J, Harley V, Ayers K, Koopman P, Sinclair A. 2019. Human sex reversal is caused by duplication or deletion of core enhancers upstream of Sox9. Nat Commun 10:3351. https://doi.org/10.1038/s41467-019-11310-w.
  • Pentland I, Campos-León K, Cotic M, Davies K, Wood C, Groves I, Burley M, Coleman N, Stockton J, Noyvert B, Beggs A, West M, Roberts S, Parish J. 2018. Disruption of CTCF-YY1–dependent looping of the human papillomavirus genome activates differentiation-induced viral oncogene transcription. PLoS Biol 16:e2005752. https://doi.org/10.1371/journal.pbio.2005752.
  • Weintraub A, Li C, Zamudio A, Sigova A, Hannett N, Day D, Abraham B, Cohen M, Nabet B, Buckley D, Guo Y, Hnisz D, Jaenisch R, Bradner J, Gray N, Young R. 2017. YY1 is a structural regulator of enhancer-promoter loops. Cell 171:1573–1588. https://doi.org/10.1016/j.cell.2017.11.008.
  • Schaukowitch K, Joo J-Y, Kim T-K. 2017. UV-RNA immunoprecipitation (UV-RIP) protocol in neurons. Methods Mol Biol 1468:33–38. https://doi.org/10.1007/978-1-4939-4035-6_4.
  • Spruce C, Dlamini S, Ananda G, Bronkema N, Tian H, Paigen K, Carter G, Baker C. 2020. HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots. Genes Dev 34:398–412. https://doi.org/10.1101/gad.333542.119.
  • Mumbach M, Rubin A, Flynn R, Dai C, Khavari P, Greenleaf W, Chang H. 2016. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13:919–922. https://doi.org/10.1038/nmeth.3999.
  • Naumova N, Smith E, Zhan Y, Dekker J. 2012. Analysis of long-range chromatin interactions using chromosome conformation capture. Methods 58:192–203. https://doi.org/10.1016/j.ymeth.2012.07.022.
  • Buske F, Bauer D, Mattick J, Bailey T. 2012. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 22:1372–1381. https://doi.org/10.1101/gr.130237.111.
  • Langmead B, Salzberg S. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.
  • Feng J, Liu T, Qin B, Zhang Y, Liu X. 2012. Identifying ChIP-seq enrichment using MACS. Nat Protoc 7:1728–1740. https://doi.org/10.1038/nprot.2012.101.
  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36.
  • Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, van Baren M, Salzberg S, Wold B, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515. https://doi.org/10.1038/nbt.1621.
  • Robinson J, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E, Getz G, Mesirov J. 2011. Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.