6
Views
4
CrossRef citations to date
0
Altmetric
Gene Expression

Transcriptional Derepression of the Saccharomyces cerevisiae HSP26 Gene during Heat Shock

&
Pages 6362-6373 | Received 13 Jun 1990, Accepted 11 Sep 1990, Published online: 31 Mar 2023

LITERATURE CITED

  • Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761–3769.
  • Ausubel, F. M., R. Brent, R. L. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1988. Current protocols in molecular biology. Green Publishers Associates and Wiley-Interscience, New York.
  • Borkovich, K. A., F. W. Farrelly, D. B. Finkelstein, J. Taulien, and S. Lindquist. 1989. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9:3919–3930.
  • Cohen, R. S., and M. Meselson. 1985. Separate regulatory elements for the heat-inducible and ovarian expression of the Drosophila hsp26 gene. Cell 43:737–746.
  • Corces, V., and A. Pellicer. 1984. Identification of sequences involved in the transcriptional control of a Drosophila heatshock gene. J. Biol. Chem. 259:14812–14817.
  • Craig, E. A., W. Boorstein, H.-O. Park, D. Stone, and C. Nicolet. 1989. Complex regulation of three heat inducible Hsp70 related genes in Saccharomyces cerevisiae. UCLA Symp. Mol. Cell. Biol. 96:51–62.
  • Glaser, R. L., and J. T. Lis. 1990. Multiple, compensatory regulatory elements specify spermatocyte-specific expression of the Drosophila melanogaster hsp26 gene. Mol. Cell. Biol. 10:131–137.
  • Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359.
  • Henikoff, S., and M. K. Eghtedarzadeh. 1987. Conserved arrangement of nested genes at the Drosophila Gart locus. Genetics 117:711–725.
  • Hoffman, E. P., S. L. Gerring, and V. G. Corces. 1987. The ovarian, ecdysterone, and heat-shock-responsive promoters of the Drosophila melanogaster hsp27 gene react very differently to pertubations of DNA sequence. Mol. Cell. Biol. 7:973–981.
  • Hultmark, D., R. Klemenz, and W. J. Gehring. 1986. Translational control elements in the untranslated leader of the heat shock gene hsp22. Cell 44:429–438.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jakobsen, B. K., and H. R. B. Pelham. 1988. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8:5040–5042.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GALI-GALIO promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Kelley, S. E., and I. L. Cartwright. 1989. Perturbation of chromatin architecture on ecdysterone induction of Drosophila melanogaster small heat shock protein genes. Mol. Cell. Biol. 9:332–335.
  • Kingston, R. E., T. J. Scheutz, and Z. Larin. 1987. Heatinducible human factor that binds to a human hsp70 promoter. Mol. Cell. Biol. 7:1530–1534.
  • Klemenz, R., and W. Gehring. 1986. Sequence requirement for expression of the Drosophila melanogaster heat shock protein hsp22 gene during heat shock and normal development. Mol. Cell. Biol. 6:2011–2019.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • Kurtz, S., and S. L. Lindquist. 1984. The changing pattern of gene expression in sporulating yeast. Proc. Natl. Acad. Sci. USA 81:7323–7327.
  • Kurtz, S., J. Rossi, L. Petko, and S. Lindquist. 1986. An ancient development induction: heat-shock proteins induced in sporulation and oogenesis. Science 231:1154–1157.
  • Lindquist, S., and E. A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631–677.
  • Lindquist, S. 1981. Regulation of protein synthesis during heat shock. Nature (London) 293:311–314.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McDaniel, D., A. J. Caplan, M.-S. Lee, C. C. Adams, B. R. Fishel, D. S. Gross, and W. T. Garrard. 1989. Basal-level expression of the yeast HSP82 gene requires a heat shock regulatory element. Mol. Cell. Biol. 9:4789–4798.
  • McMaster, G. K., and G. G. Carmichael. 1977. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 74:4835–4838.
  • Morimoto, R. I., D. Mosser, T. K. McClanahan, N. G. Therodorakis, and G. Williams. 1989. Transcriptional regulation of the human Hsp70 gene. UCLA Symp. Mol. Cell. Biol. 96:83–94.
  • Munro, S., and H. Pelham. 1985. What turns on heat shock genes? Nature (London) 317:476–478.
  • Nover, L. 1987. Expression of heat shock genes in homologous and heterologous systems. Enzyme Microb. Technol. 9:130–144.
  • Park, H.-O., and E. A. Craig. 1989. Positive and negative regulation of basal expression of a yeast hsp70 gene. Mol. Cell. Biol. 9:2025–2033.
  • Parker, C. S., and J. Topol. 1984. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell 37:273–283.
  • Pelham, H. R. B. 1982. A regulating upstream promoter element in the Drosophila HSP70 heat-shock gene. Cell 30:517–528.
  • Perisic, O., H. Xiao, and J. T. Lis. 1989. Stable binding of Drosophila heat shock factor to heat-to-head and tail-to-tail repeats of a conserved 5bp recognition unit. Cell 59:797–806.
  • Petersen, R., and S. Lindquist. 1988. The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene 72:161–168.
  • Petko, L., and S. Lindquist. 1986. Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45:885–894.
  • Riddihough, G., and H. R. B. Pelham. 1986. Activation of the Drosophila hsp27 promoter by heat shock and by ecdysone involves independent and remote regulatory sequences. EMBO J. 5:1653–1658.
  • Rossi, J., and S. Lindquist. 1989. Intercellular location of hsp26 in yeast cells varies with metabolism. J. Cell Biol. 108:425–439.
  • Rougvie, A. E., and J. T. Lis. 1988. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54:795–804.
  • Sikorsky, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Slater, M. R., and E. A. Craig. 1987. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1906–1916.
  • Sorger, P. K., M. J. Lewis, and H. R. B. Pelham. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature (London) 329:81–84.
  • Sorger, P. K., and H. R. B. Pelham. 1987. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J. 6:3035–3041.
  • Sorger, P. K., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864.
  • Struhl, K. 1987. Promoter activator proteins and the mechanism of transcriptional initiation in yeast. Cell 49:295–297.
  • Sumadra, R. A., and T. G. Cooper. 1987. Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl. Acad. Sci. USA 84:3997–4001.
  • Susek, R. E., and S. L. Lindquist. 1989. hsp26 of Saccharomyces cerevisiae is related to the superfamily of small hsps but is without a demonstrable function. Mol. Cell. Biol. 9:5265–5271.
  • Tanaka, K., T. Yatomi, K. Matsumoto, and A. Toh-e. 1989. Transcription of the heat shock genes by cyclic-AMP and heat shock in yeast. UCLA Symp. Mol. Cell. Biol. 96:63–72.
  • Werner-Washburne, M., J. Becker, J. Kosic-Smithers, and E. A. Craig. 1989. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J. Bacteriol. 171:2680–2688.
  • Wiederrecht, G., D. Seto, and C. S. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853.
  • Wu, C. 1984. Activating protein factor binds in vitro to upstream control sequences in the heat shock gene chromatin. Nature (London) 311:81–84.
  • Xiao, H., and J. T. Lis. 1988. Germline transformation used to define key features of heat-shock response elements. Science 239:1139–1142.
  • Zagursky, R. J., and M. L. Berman. 1984. Cloning vectors that yield high levels of single-stranded DNA for rapid DNA sequencing. Gene 27:183–191.
  • Zimarino, V., C. Tsai, and C. Wu. 1990. Complex modes of heat shock factor activation. Mol. Cell. Biol. 10:752–759.
  • Zimarino, V., and C. Wu. 1987. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature (London) 327:727–728.
  • Zoller, M. J., and M. Smith. 1985. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. Methods Enzymol. 154:329–350.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.