1
Views
6
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Ligand-Induced Phosphorylation of the Colony-Stimulating Factor 1 Receptor Can Occur through an Intermolecular Reaction That Triggers Receptor Down Modulation

, , &
Pages 1664-1671 | Received 25 Sep 1989, Accepted 27 Dec 1989, Published online: 31 Mar 2023

Literature Cited

  • Anderson, S. J., M. A. Gonda, C. W. Rettenmier, and C. J. Sherr. 1984. Subcellular localization of glycoproteins encoded by the viral oncogene v-fms. J. Virol. 51:730–741.
  • Ashmun, R. A., A. T. Look, W. M. Roberts, M. F. Roussel, S. T. Seremetis, M. Ohtsuka, and C. J. Sherr. 1989. Monoclonal antibodies to the human CSF-1 receptor (c-fins proto-oncogene product) detect epitopes on normal mononuclear phagocytes and on human myeloid leukemic blast cells. Blood 73:827–837.
  • Bertics, P. J., W. S. Chen, L. Hubler, C. S. Lazar, M. G. Rosenfeld, and G. N. Gill. 1988. Alteration of epidermal growth factor receptor activity by mutation of its primary carboxylterminal site of tyrosine self-phosphorylation. J. Biol. Chem. 263:3610–3617.
  • Bertics, P. J., and G. N. Gill. 1985. Self-phosphorylation enhances the protein-tyrosine kinase activity of the epidermal growth factor receptor. J. Biol. Chem. 260:14642–14647.
  • Boni-Schnetzler, M., and P. F. Pilch. 1987. Mechanism of epidermal growth factor receptor autophosphorylation and high affinity binding. Proc. Natl. Acad. Sci. USA 84:7832–7836.
  • Boni-Schnetzler, M., A. Kaligian, R. Del Vecchio, and P. F. Pilch. 1988. Ligand-dependent intersubunit association within the insulin receptor complex activates its intrinsic kinase activ- ity. J. Biol. Chem. 263:6822–6828.
  • Cochet, C., O. Kashles, E. M. Chambaz, I. Borel Io, C. R. King, and J. Schlessinger. 1988. Demonstration of epidermal growth factor-induced receptor dimerization in living cells using a chemical covalent cross-linking agent. J. Biol. Chem. 263:3290–3295.
  • Cooper, J. A., and A. MacAuley. 1988. Potential positive and negative autoregulation of p60c-src by intermolecular autophosphorylation. Proc. Natl. Acad. Sci. USA 85:4232–4236.
  • Coussens, L., C. Van Beveren, D. Smith, E. Chen, R. L. Mitchell, C. M. Isacke, I. M. Verma, and A. Ullrich. 1986. Structural alteration of viral homologue of receptor protooncogene fms at carboxyl terminus. Nature 320:277–280.
  • Downing, J. R., C. W. Rettenmier, and C. J. Sherr. 1988. Ligand-induced tyrosine kinase activity of the colony stimulating factor-1 receptor in a murine macrophage cell line. Mol. Cell. Biol. 8:1795–1799.
  • Downing, J. R., M. F. Roussel, and C. J. Sherr. 1989. Ligand and protein kinase C down modulate the colony-stimulating factor-1 receptor by independent mechanisms. Mol. Cell. Biol. 9:2890–2896.
  • Ellis, L., E. Clauser, D. O. Morgan, M. Edery, R. A. Roth, and W. J. Rutter. 1986. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell 45:721–732.
  • Fanger, Β. O., J. E. Stephens, and J. V. Staros. 1989. High-yield trapping of EGF-induced receptor dimers by chemical crosslinking. FASEB J. 3:71–75.
  • Furman, W. L., C. W. Rettenmier, J. H. Chen, M. F. Roussel, C. O. Quinn, and C. J. Sherr. 1986. Antibodies to distal carboxyl terminal epitopes in the v-fms-coded glycoprotein do not cross-react with the c-fms gene product. Virology 152:432–445.
  • Glenney, J. R., W. S. Chen, C. S. Lazar, G. M. Welton, L. M. Zokos, M. G. Rosenfeld, and G. N. Gill. 1988. Ligand-induced endocytosis of the EGF receptor is blocked by mutational inactivation and by microinjection of anti-phosphotyrosine antibodies. Cell 52:675–684.
  • Guilbert, L. J., and E. R. Stanley. 1980. Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells. J. Cell Biol. 85:153–159.
  • Guilbert, L. J., and E. R. Stanley. 1986. The interaction of 125I-colony-stimulating factor-1 with bone marrow-derived macrophages. J. Biol. Chem. 261:4024–4032.
  • Heldin, C.-H., G. Backstrom, A. Ostman, A. Hammacher, L. Ronnstrand, K. Rubin, M. Nister, and B. Westermark. 1988. Binding of different dimeric forms of PDGF to human fibroblasts: evidence for two separate receptor types. EMBO J. 7:1387–1393.
  • Heldin, C.-H., A. Ernlund, C. Rorsman, and L. Ronnstrand. 1989. Dimerization of B type PDGF receptors occurs after ligand binding and is closely associated with receptor kinase activation. J. Biol. Chem. 264:8905–8912.
  • Herrera, R., and O. M. Rosen. 1986. Autophosphorylation of the insulin receptor in vitro. Designation of phosphorylation sites and correlation with receptor kinase activation. J. Biol. Chem. 261:11980–11985.
  • Honegger, A., T. J. Dull, F. Bellot, E. Van Obberghen, D. Szapary, A. Schmidt, A. Ullrich, and J. Schlessinger. 1988. Biological activities of EGF-receptor mutants with individually altered phosphorylation sites. EMBO J. 7:3045–3052.
  • Honegger, A. M., T. J. Dull, S. Felder, E. Van Obberghen, F. Bellot, D. Szapary, A. Schmidt, A. Ullrich, and J. Schlessinger. 1987. Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing. Cell 51:199–209.
  • Honegger, A., T. J. Dull, D. Szapary, A. Komoriya, R. Kris, A. Ullrich, and J. Schlessinger. 1988. Kinetic parameters of the protein tyrosine kinase activity of EGF-receptor mutants with individually altered autophosphorylation sites. EMBO J. 7:3053–3060.
  • Honegger, A. M., R. M. Kris, A. Ullrich, and J. Schlessinger. 1989. Evidence that autophosphorylation of solubilized recep tors for epidermal growth factor is mediated by intermolecular cross-phosphorylation. Proc. Natl. Acad. Sci. USA 86:925–929.
  • Kmiecik, T. E., and D. Shalloway. 1987. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49:65–73.
  • Meckling-Hansen, K., R. Nelson, P. Branton, and T. Pawson. 1987. Enzymatic activation of Fujinami sarcoma virus gag-fps transforming proteins by autophosphorylation at tyrosine. EMBO J. 6:659–666.
  • Merrifield, R. B. 1983. Solid phase peptide synthesis. 1. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85:2149–2154.
  • Morgan, C. J., and E. R. Stanley. 1984. Chemical crosslinking of the mononuclear phagocyte specific growth factor CSF-1 to its receptor at the cell surface. Biochem. Biophys. Res. Commun. 119:35–41.
  • Ohtsuka, M., S. Ihara, R. Ogawa, T. Watanabe, and Y. Watanabe. 1984. Preparation and characterization of antibodies to O-phosphotyrosine and their use in identification of phosphotyrosine-containing proteins. Int. J. Cancer 34:855–861.
  • Piwnica-Worms, H., K. B. Saunders, T. M. Roberts, A. E. Smith, and S. H. Cheng. 1987. Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c src. Cell 49:75–82.
  • Rettenmier, C. W., J. H. Chen, M. F. Roussel, and C. J. Sherr. 1985. The product of the c-fms proto-oncogene: a glycoprotein with associated tyrosine kinase activity. Science 228:320–322.
  • Rettenmier, C. W., R. Sacca, W. L. Furman, M. F. Roussel, J. T. Holt, A. W. Nienhuis, E. R. Stanley, and C. J. Sherr. 1986. Expression of the human c-fms proto-oncogene product (colony-stimulating factor-1 receptor) on peripheral blood mononuclear cells and choriocarcinoma cell lines. J. Clin. Invest. 77:1740–1746.
  • Rosen, O. M., R. Herrera, Y. Olowe, L. M. Petruzzelli, and M. H. Cobb. 1983. Phosphorylation activates the insulin receptor tyrosine kinase. Proc. Natl. Acad. Sci. USA 80:3237–3240.
  • Roussel, M. F., J. R. Downing, C. W. Rettenmier, and C. J. Sherr. 1988. A point mutation in the extracellular domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential. Cell 55:979–988.
  • Roussel, M. F., J. R. Downing, and C. J. Sherr. 1990. Transforming activities of human CSF-1 receptors with different point mutations at codon 301 in their extracellular domains. Oncogene 5:25–30.
  • Roussel, M. F., T. J. Dull, C. W. Rettenmier, P. Ralph, A. Ullrich, and C. J. Sherr. 1987. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature (London) 325:549–552.
  • Roussel, M. F., C. W. Rettenmier, A. T. Look, and C. J. Sherr. 1984. Cell surface expression of v-fms-coded glycoproteins is required for transformation. Mol. Cell. Biol. 4:1999–2009.
  • Seifert, R. A., C. E. Hart, P. E. Phillips, J. W. Forstrom, R. Ross, M. J. Murray, and D. F. Bowen-Pope. 1989. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J. Biol. Chem. 264:8771–8778.
  • Sherr, C. J. 1990. The colony-stimulating factor 1 receptor. Blood 75:1–12.
  • Sherr, C. J., C. W. Rettenmier, R. Sacca, M. F. Roussel, A. T. Look, and E. R. Stanley. 1985. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676.
  • Southern, P. J., and P. Berg. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–338.
  • W'einmaster, G., M. J. Zoller, M. Smith, E. Hinze, and T. Pawson. 1984. Mutagenesis of Fujinami sarcoma virus: Evidence that tyrosine phosphorylation of Ρ130gag-fps modulates its biological activity. Cell 37:559–568.
  • Woolford, J., A. McAuliffe, and L. R. Rohrschneider. 1988. Activation of the feline c-fms proto-oncogene: multiple alter ations are required to generate a fully transformed phenotype. Cell 55:965–977.
  • Yarden, Y., and J. Schlessinger. 1987. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26:1434–1442.
  • Yarden, Y., and J. Schlessinger. 1987. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26:1443–1451.
  • Yu, K.-T., and M. P. Czech. 1984. Tyrosine phosphorylation of the insulin receptor β subunit activates the receptor-associated tyrosine kinase activity. J. Biol. Chem. 259:5277–5286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.