6
Views
3
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Peroxisomes in Saccharomyces cerevisiae: Immunofluorescence Analysis and Import of Catalase A into Isolated Peroxisomes

, , , &
Pages 510-522 | Received 31 Jul 1990, Accepted 23 Oct 1990, Published online: 31 Mar 2023

References

  • Alexson, S. E. H., Y. Fujiki, H. Shio, and P. B. Lazarow. 1985. Partial disassembly of peroxisomes. J. Cell Biol. 101:294–305.
  • Avers, C. J., and M. Federman. 1968. The occurrence in yeast of cytoplasmic granules which resemble microbodies. J. Cell Biol. 37:555–559.
  • Baudhuin, P., H. Beaufay, Y. Rahman-Li, O. Z. Sellinger, R. Wattiaux, P. Jacques, and C. de Duve. 1964. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase, and catalase in rat-liver tissue. Biochem. J. 92:179–184.
  • Beaufay, H., A. Amar-Costesec, E. Feytmans, D. Thines-Sem- poux, M. Wibo, M. Robbi, and J. Berthet. 1974. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J. Cell Biol. 61:188–200.
  • Borst, P. 1989. Peroxisome biogenesis revisited. Biochem. Biophys. Acta 1008:1–13.
  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Cohen, G., F. Fessl, A. Traczyk, J. Rytka, and H. Ruis. 1985. Isolation of the catalase A gene of Saccharomyces cerevisia. by complementation of the ctal mutation. Mol. Gen. Genet. 200: 74–79.
  • Cohen, G., W. Rapatz, and H. Ruis. 1988. Sequence of the Saccharomyces cerevisia. CTA 1 gene and amino acid sequence of catalase A derived from it. Eur. J. Biochem. 176:159–163.
  • Dixon, G. H., and H. L. Kornberg. 1959. Assay methods for key enzymes of the glyoxylate cycle. Biochem. J. 72:3P.
  • Erdmann, R., M. Veenhuis, D. Mertens, and W.-H. H. 1989. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86:5419–5423.
  • Erickson, A. H., and G. Blobel. 1983. Cell-free translation of messenger RNA in a wheat germ system. Methods Enzymol. 96:38–50.
  • Fujiki, Y., R. A. Rachubinski, R. M. Mortensen, and P. B. Lazarow. 1985. Synthesis of 3-ketoacyl-CoA thiolase of rat liver peroxisomes on free polyribosomes as a larger precursor. Induction of thiolase mRNA activity by clofibrate. Biochem. J. 226:697–704.
  • Fujiki, Y., R. A. Rachubinski, A. Zentella-Dehesa, and P. B. Lazarow. 1986. Induction, identification and cell-free translation of mRNAs coding for peroxisomal proteins in Candida tropicalis. J. Biol. Chem. 261:15787–15793.
  • Fukui, S., and A. Tanaka. 1979. Peroxisomes of alkane- and methanol-grown yeasts. J. Appl. Biochem. 1:171–201.
  • Garoff, H. 1985. Using recombinant DNA techniques to study protein targeting in the eucaryotic cell. Annu. Rev. Cell Biol. 1:403–445.
  • Goodman, J. M., C. W. Scott, P. N. Donahue, and J. P. Atherton. 1984. Alcohol oxidase assembles post-translationally into the peroxisomes of Candida boidinii. J. Biol. Chem. 259:8485–8493.
  • Gould, S. J., G.-A. Keller, N. Hosken, J. Wilkinson, and S. Subramani. 1989. A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108:1657–1664.
  • Gould, S. J., G.-A. Keller, M. Schneider, S. H. Howell, L. J. Garrard, J. M. Goodman, B. Distel, H. Tabak, and S. Subramani. 1990. Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 9:85–90.
  • Hansen, H., and R. Roggenkamp. 1989. Functional complementation of catalase-defective peroxisomes in a methylotropic yeast by import of catalase A from Saccharomyces cerevisiae. Eur. J. Biochem. 184:173–179.
  • Hartig, A., M. Ogris, G. Cohen, and M. Binder. 1990. Fate of highly expressed proteins destined to peroxisomes in Saccharomyces cerevisiae. Curr. Genet. 18:23–27.
  • Hartig, A., and H. Ruis. 1986. Nucleotide sequence of the Saccharomyces cerevisia. CTT1 gene and deduced amino-acid sequence of yeast catalase T. Eur. J. Biochem. 160:487–490.
  • Hörtner, H., G. Ammerer, E. Hartter, B. Hamilton, J. Rytka, T. Bilinski, and H. Ruis. 1982. Regulation of synthesis of catalases and iso-l-cytochrome c in Saccharomyces cerevisia. by glucose, oxygen and heme. Eur. J. Biochem. 128:179–184
  • Imanaka, T., G. M. Small, and P. B. Lazarow. 1987. Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J. Cell Biol. 105:2915–2922.
  • Kionka, C., and W.-H. H. 1985. Inducible β-oxidation pathway in Neurospora crassa. J. Bacteriol. 161:153–157.
  • Kunau, W. H. Personal communication.
  • Lazarow, P. B. 1989. Peroxisome biogenesis. Curr. Opin. Cell Biol. 1:630–634.
  • Lazarow, P. B., and Y. Fujiki. 1985. Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1:489–530.
  • Leighton, F., B. Poole, H. Beaufay, P. Baudhuin, J. W. Coffey, S. Fowler, and C. de Duve. 1968. The large scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with Triton WR-1339. J. Cell Biol. 37:482–513.
  • Lewin, A. S., V. Hines, and G. M. Small. 1990. Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1399–1405.
  • Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Miyazawa, S., T. Osumi, T. Hashimoto, K. Ohno, S. Miura, and Y. Fujiki. 1989. Peroxisome targeting signal of rat liver acyl coenzyme A oxidase resides at the carboxy terminus. Mol. Cell. Biol. 9:83–91.
  • Muller, M., J. F. Hogg, and C. de Duve. 1968. Distribution of tricarboxylic acid cycle enzymes and glyoxylate cycle enzymes between mitochondria and peroxisomes in Tetrahymena pyri- formis. J. Biol. Chem. 243:5385–5395.
  • Santos, M. J., T. Imanaka, H. Shio, and P. B. Lazarow. 1988. Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J. Biol. Chem. 263:10502–10509.
  • Schekman, R. 1985. Protein localization and membrane traffic in yeast. Annu. Rev. Cell Biol. 1:115–143.
  • Seah, T. C. M., A. R. Bhatti, and J. G. Kaplan. 1973. Novel catalatic proteins of bakers’ yeast. I. An atypical catalase. Can. J. Biochem. 51:1551–1555.
  • Seah, T. C. M., and J. G. Kaplan. 1973. Purification and properties of the catalase of bakers’ yeast. J. Biol. Chem. 248:2889–2893.
  • Skoneczny, M., A. Chelstowska, and J. Rytka. 1988. Study of the coinduction by fatty acids of catalase A and acyl-CoA oxidase in standard and mutant Saccharomyces cerevisia. strains. Eur. J. Biochem. 174:297–302.
  • Small, G. M., K. Burdett, and M. J. Connock. 1985. A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochem. J. 227:205–210.
  • Small, G. M., T. Imanaka, and P. B. Lazarow. 1988. Immunoblotting of hydrophobic integral membrane proteins. Anal. Biochem. 169:405–409.
  • Small, G. M., T. Imanaka, H. Shio, and P. B. Lazarow. 1987. Efficient association of in vitro translation products with purified, stable Candida tropicali. peroxisomes. Mol. Cell. Biol. 7:1848–1855.
  • Small, G. M., L. J. Szabo, and P. B. Lazarow. 1988. Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. EMBO J. 7:1167–1173.
  • Spevak, W., F. Fessl, J. Rytka, A. Traczyk, M. Skoneczny, and H. Ruis. 1983. Isolation of catalase T structural gene of Saccharomyces cerevisia. by functional complementation. Mol. Cell. Biol. 3:1545–1551.
  • Strathern, J. N., E. W. Jones, and J. R. Broach (ed.). 1981. The molecular biology of the yeast Saccharomyces life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Strathern, J. N., E. W. Jones, and J. R. Broach (ed.). 1982. The molecular biology of the yeast Saccharomyces metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Susani, M., P. Zimniak, F. Fessl, and H. Ruis. 1976. Localization of catalase A in vacuoles of Saccharomyces cerevisiae. evidence for the vacuolar nature of isolated “yeast peroxi somes.” Hoppe-Seyler’s Z. Physiol. Chem. 357:961–970.
  • Szabo, A. S., and C. J. Avers. 1969. Some aspects of regulation of peroxisomes and mitochondria in yeast. Ann. N.Y. Acad. Sci. 168:302–312.
  • Tolbert, N. E. 1981. Metabolic pathways in peroxisomes and glyoxysomes. Annu. Rev. Biochem. 50:133–157.
  • Veenhuis, M., M. Mateblowski, W.-H. Kunau, and W. Harder. 1987. Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3:77–84.
  • Veenhuis, M., J. P. Van Dijken, and W. Harder. 1976. Cytochemical studies on the localization of methanol oxidase and other oxidases in peroxisomes of methanol-grown Hansenula polymorpha. Arch. Microbiol. 111:123–135.
  • Wiemken, A., M. Schellenberg, and K. Urech. 1979. Vacuoles: the sole compartments of digestive enzymes in yeast (Saccharomyces cerevisiae). Arch. Microbiol. 123:23–35.
  • Zimniak, P., E. Hartter, W. Woloszczuk, and H. Ruis. 1976. Catalase biosynthesis in yeast: formation of catalase A and catalase T during oxygen adaptation of Saccharomyces cerevisiae. Eur. J. Biochem. 71:393–398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.