2
Views
3
CrossRef citations to date
0
Altmetric
Cell Growth and Development

A Mutation in the Putative Mg2+-Binding Site of Gs α Prevents Its Activation by Receptors

, , &
Pages 4830-4838 | Received 01 May 1991, Accepted 27 Jun 1991, Published online: 31 Mar 2023

References

  • Barbacid, M. 1987. ras genes. Annu. Rev. Biochem. 56:779-827.
  • Birnbaumer, L. 1990. Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so. FASEB J. 4:3178-3188.
  • Birnbaumer, L., J. Abramowitz, and A. M. Brown. 1990. Receptor-effector coupling by G proteins. Biochim. Biophys. Acta 1031:163-224.
  • Birnbaumer, L., T. L. Swartz, J. Abramowitz, P. W. Mintz, and R. Iyengar. 1980. Transient and steady state kinetics of the interaction of guanyl nucleotides with the adenylyl cyclase system from rat liver plasma membranes. Interpretation in terms of a simple two-state model. J. Biol. Chem. 255:3542-3551.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature (London) 348:125-132.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature (London) 349:117-127.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
  • Cai, H., J. Szeberenyi, and G. M. Cooper. 1990. Effect of a dominant inhibitory Ha-ras mutation on mitogenic signal transduction in NIH 3T3 cells. Mol. Cell. Biol. 10:5314-5323.
  • Coffino, P., H. R. Bourne, and G. M. Tomkins. 1975. Somatic genetic analysis of cyclic AMP action: selection of unresponsive mutants. J. Cell. Physiol. 85:603-610.
  • Downward, J., J. D. Graves, P. H. Warne, S. Rayter, and D. A. Cantrell. 1990. Stimulation of p21ras upon T-cell activation. Nature (London) 346:719-723.
  • Eckstein, F., D. Cassel, H. Levkovitz, M. Lowe, and Z. Selinger. 1979. Guanosine 5′-O-(2-thiodiphosphate): an inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J. Biol. Chem. 254:9829-9834.
  • Farnsworth, C. L., and L. A. Feig. 1991. Dominant inhibitory mutations in the Mg2+-binding site of RasH prevent its activation by GTP. Mol. Cell. Biol. 11:4822-4829.
  • Feig, L. A., and G. M. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8:3235-3243.
  • Feig, L. A., and G. M. Cooper. 1988. Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins. Mol. Cell. Biol. 8:2472-2478.
  • Feig, L. A., B. T. Pan, T. M. Roberts, and G. M. Cooper. 1986. Isolation of ras GTP-binding mutants using an in situ colony-binding assay. Proc. Natl. Acad. Sci. USA 83:4607-4611.
  • Freissmuth, M., P. J. Casey, and A. G. Gilman. 1989. G proteins control diverse pathways of transmembrane signaling. FASEB. J. 3:2125-2131.
  • Gibbs, J. B., M. S. Marshall, E. M. Scolnick, R. A. F. Dickson, and U. S. Vogel. 1990. Modulation of guanine nucleotides bound to Ras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein GAP. J. Biol. Chem. 265:20437-20442.
  • Gierschik, P., J. Codina, C. Simons, L. Birnbaumer, and A. Spiegel. 1985. Antisera against a guanine nucleotide binding protein from retina cross-react with the beta subunit of the adenylyl cyclase-associated guanine nucleotide binding proteins, Ns and Ni. Proc. Natl. Acad. Sci. USA 82:727-731.
  • Graziano, M. P., and A. G. Gilman. 1989. Synthesis in Escherichia coli of GTPase-deficient mutants of Gs α. J. Biol. Chem. 264:15475-15482.
  • Harris, B. A., J. D. Robishaw, S. M. Mumby, and A. G. Gilman. 1985. Molecular cloning of complementary DNA for the alpha subunit of the G protein that stimulates adenylate cyclase. Science 229:1274-1277.
  • Hildebrandt, J. D., and L. Birnbaumer. 1983. Inhibitory regulation of adenylyl cyclase in the absence of stimulatory regulation. Requirements and kinetics of guanine nucleotide-induced inhibition of the cyc− S49 adenylyl cyclase. J. Biol. Chem. 258:13141-13147.
  • Hildebrandt, J. D., J. Codina, R. Risinger, and L. Birnbaumer. 1984. Identification of a gamma subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni. J. Biol. Chem. 259:2039-2042.
  • Hildebrandt, J. D., J. Hanoune, and L. Birnbaumer. 1982. Guanine nucleotide inhibition of cyc− S49 mouse lymphoma cell membrane adenylyl cyclase. J. Biol. Chem. 257:14723-14725.
  • Iyengar, R., M. K. Bhat, M. E. Riser, and L. Birnbaumer. 1981. Receptor-specific de sensitization of the S49 lymphoma cell adenylyl cyclase. Unaltered behavior of the regulatory component. J. Biol. Chem. 256:4810-4815.
  • Jones, D. T., and R. R. Reed. 1987. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J. Biol. Chem. 262:14241-14249.
  • Kirschmeier, P. T., G. M. Housey, M. D. Johnson, A. S. Pezkins, and I. B. Weinstein. 1988. Construction and characterization of a retroviral vector demonstrating efficient expression of cloned cDNA sequences. DNA 7:219-225.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.
  • Landis, C. A., S. B. Masters, A. Spada, A. M. Pace, H. R. Bourne, and L. Vallar. 1989. GTPase inhibiting mutations activate the a chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature (London) 340:692-696.
  • Londos, C., Y. Salomon, M. C. Lin, J. P. Harwood, M. Schramm, J. Wolff, and M. Rodbell. 1974. 5-Guanylylimido-diphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc. Natl. Acad. Sci. USA 71:3087-3090.
  • Masters, S. B., R. T. Miller, M. H. Chi, F. H. Chang, B. Beiderman, N. G. Lopez, and H. R. Bourne. 1989. Mutations in the GTP-binding site of Gs α alter stimulation of adenylyl cyclase. J. Biol. Chem. 264:15467-15474.
  • Masters, S. B., K. A. Sullivan, R. T. Miller, B. Beiderman, N. G. Lopez, J. Ramachandran, and H. R. Bourne. 1988. Carboxyl terminal domain of Gs α specifies coupling of receptors to stimulation of adenylyl cyclase. Science 241:448-451.
  • Milburn, M. V., L. Tong, A. M. de Vos, A. Brunger, Z. Yamaizumi, S. Nishimura, and S. H. Kim. 1990. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939-945.
  • Northup, J. K., M. D. Smigel, and A. G. Gilman. 1982. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding. J. Biol. Chem. 257:11416-11423.
  • Osawa, S., N. Dhanasekaran, C. W. Woon, and G. L. Johnson. 1990. Gαi-Gαs chimera define the function of a chain domains in control of G protein activation and β subunit interactions. Cell 63:697-706.
  • Osawa, S., and G. L. Johnson. 1991. A dominant negative Gαs mutant is rescued by secondary mutation of the α chain amino terminus. J. Biol. Chem. 266:4673-4676.
  • Powers, S., K. O’Neill, and M. Wigler. 1989. Dominant yeast and mammalian ras mutants that interfere with the CDC25-dependent activation of wild-type ras in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:390-395.
  • Ross, E. M., M. E. Maguire, T. W. Sturgill, R. L. Biltonen, and A. G. Gilman. 1977. Relationship between the beta-adrenergic receptor and adenylate cyclase. J. Biol. Chem. 252:5761-5775.
  • Salomon, Y. 1979. Adenylate cyclase assay. Adv. Cyclic Nucleotide Res. 10:35-54.
  • Satoh, T., M. Endo, M. Nakafuku, S. Nakamura, and Y. Kaziro. 1990. Platelet-derived growth factor stimulates formation of active p21ras-GTP complex formation in Swiss mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 87:5993-5997.
  • Schaber, M. D., V. M. Garsky, D. B. Boylon, W. S. Hill, E. M. Scolnick, M. S. Marshall, I. S. Sigal, and J. B. Gibbs. 1989. Ras interactions with the GTPase-activating protein (GAP). Proteins 6:306-315.
  • Schlichting, I., S. C. Almo, G. Rapp, K. Wilson, K. Petratos, A. Lentfer, A. Wittinghofer, W. Kabsch, E. F. Pai, and G. A. Petsko. 1990. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature (London) 345:309-315.
  • Seamon, K. B., W. Padgett, and J. W. Daly. 1981. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78:3363-3367.
  • Spiegel, A. M., W. F. Simonds, T. L. Jones, P. K. Goldsmith, and C. G. Unson. 1990. Antibodies against synthetic peptides as probes of G protein structure and function. Soc. Gen. Physiol. Ser. 45:185-195.
  • Stacey, D. W., L. A. Feig, and J. B. Gibbs. 1991. Dominant inhibitory ras mutants selectively inhibit the activity of either cellular or oncogenic ras. Mol. Cell. Biol. 11:4053-4064.
  • Szeberenyi, J., H. Cai, and G. M. Cooper. 1990. Effect of a dominant inhibitory Ha-ras mutation on neuronal differentiation of PC12 cells. Mol. Cell. Biol. 10:5324-5332.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350-4354.
  • Trahey, M., and F. McCormick. 1987. A cytoplasmic protein stimulates normal N-Ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542-545.
  • van Daalan Wetters, T., and P. Coffino. 1987. Cultured S49 mouse T lymphoma cells. Methods Enzymol. 151:9-19.
  • Woon, C. W., L. Heasley, S. Osawa, and G. L. Johnson. 1989. Mutation of glycine 49 to valine in the a subunit of Gs results in the constitutive elevation of cyclic AMP synthesis. Biochemistry 28:4547-4551.
  • Yu, C.-L., M.-H. Tsai, and D. W. Stacey. 1990. Serum stimulation of NIH 3T3 cells induces the production of lipids able to inhibit GTPase-activating protein activity. Mol. Cell. Biol. 10:6683-6689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.