3
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Exon Recognition and Nucleocytoplasmic Partitioning Determine AMPD1 Alternative Transcript Production

&
Pages 5356-5363 | Received 03 Jan 1991, Accepted 15 Jul 1991, Published online: 31 Mar 2023

References

  • Adami, G. R., and G. G. Carmichael. 1987. The length but not the sequence of the polyomavirus late leader exon is important for both late RNA splicing and stability. Nucleic Acids Res. 15:2593-2610.
  • Aho, S., V. Tate, and H. Boedtker. 1984. Location of the 11 bp exon in the chicken pro alfa2(I) collagen gene. Nucleic Acids Res. 12:6117-6125.
  • Baldwin, A. S., E. W. Kittler, and C. P. Emerson. 1985. Structure, evolution, and regulation of a fast skeletal muscle troponin I gene. Proc. Natl. Acad. Sci. USA 82:8080-8084.
  • Black, D. L. 1991. Does steric interference between splice sites block the splicing of a short C-sre neuron-specific exon in non-neuronal cells? Genes Dev. 5:389-402.
  • Breibart, R. E., A. Andreadis, and B. Nadal-Ginard. 1987. Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu. Rev. Biochem. 56:467-495.
  • Chang, D. D., and P. A. Sharp. 1989. Regulation by HIV Rev depends upon recognition of splice sites. Cell 59:789-795.
  • Chang, D. D., and P. A. Sharp. 1990. Messenger RNA transport and HIV rev regulation. Science 249:614-615.
  • Chu, G., and P. A. Sharp. 1981. A gene chimaera of SV40 and mouse β-globin is transcribed and properly spliced. Nature (London) 289:378-382.
  • Cooper, T. A., and C. P. Ordahl. 1985. A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J. Biol. Chem. 260:11140-11148.
  • Cooper, T. A., and C. P. Ordahl. 1989. Nucleotide substitutions within the cardiac troponin T alternative exon disrupt pre-mRNA alternative splicing. Nucleic Acids Res. 17:7905-7921.
  • Eperon, L. P., I. R. Graham, A. D. Griffiths, and I. C. Eperon. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393-401.
  • Feener, C. A., M. Koening, and L. M. Kunkel. 1989. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature (London) 338:509-511.
  • Feigner, P. L., T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenze, J. P. Northrop, G. M. Ringold, and M. Danielsen. 1987. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84:7413-7417.
  • Frendewey, D., and W. Keller. 1985. Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42:355-367.
  • Fu, X.-Y., and J. L. Manley. 1987. Factors influencing alternative splice site utilization in vivo. Mol. Cell. Biol. 7:738-748.
  • Fu, X.-Y., H. Ge, and J. M. Manley. 1988. The role of the polypyrimidine stretch at the SV40 early pre-mRNA 3′ splice site in alternative splicing. EMBO J. 7:809-817.
  • Gallego, M. E., and B. Nadal-Ginard. 1990. Myosin light-chain 1/3 gene alternative splicing: cis regulation is based upon a hierarchical compatibility between splice sites. Mol. Cell. Biol. 10:2133-2144.
  • Ge, H., and J. L. Manley. 1990. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62:25-34.
  • Green, M. R., and M. Zapp. 1989. Human immunodeficiency virus: revving up gene expression. Nature (London) 338:200-201.
  • Gunning, P., J. Leavitt, G. Muscat, S. Y. Ng, and L. Kedes. 1987. A human β-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. USA 84:4831-4835.
  • Hampson, R. K., L. L. Follette, and F. M. Rottman. 1989. Alternative processing of bovine growth hormone mRNA is influenced by downstream exon sequences. Mol. Cell. Biol. 9:1604-1610.
  • Helfman, D. M., and W. M. Ricci. 1989. Branch point selection in alternative splicing of tropomyosin pre-mRNAs. Nucleic Acids Res. 17:5633-5650.
  • Krainer, A. R., G. C. Conway, and D. Kozak. 1990. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62:35-42.
  • Kuivaniemi, H., S. Kontusaari, G. Tromp, M. Zhao, C. Sabol, and D. J. Prockop. 1990. Identical G + 1 to a mutations in three different introns of the type III procollagen gene (COL3A1) produce different patterns of RNA splicing in three variants of Ehlers-Danlos syndrome IV: an explanation for exon skipping with some mutations and not others. J. Biol. Chem. 265:12067-12074.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367-382.
  • Kuo, H. C., F. H. Nasim, and P. J. Grabowski. 1991. Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. Science 251:1045-1050.
  • Lang, K. M., and W. Keller. 1990. Sequence requirements in different steps of pre-mRNA splicing reaction: analysis by the RNA modification-exclusion technique. Moll. Cell. Biol. 10:4942-4947.
  • Legrain, P., and M. Rosbash. 1989. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57:573-583.
  • Lowenstein, J. M. 1972. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol. Rev. 52:382-414.
  • Malim, M. H., J. Hauber, S.-Y. Le, J. V. Maizel, and B. R. Cullen. 1989. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature (London) 338:254-257.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mineo, I., P. R. H. Clarke, R. L. Sabina, and E. W. Holmes. 1990. A novel pathway for alternative splicing: identification of an RNA intermediate that generates an alternative 5′ splice donor site not present in the primary transcript of AMPD1. Mol. Cell. Biol. 10:5271-5278.
  • Miyazaki, H., A. Fukamizu, S. Hirose, T. Hayashi, H. Hori, H. Ohkubo, S. Nakanishi, and K. Murakami. 1984. Structure of the human renin gene. Proc. Natl. Acad. Sci. USA 81:5999-6003.
  • Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459-472.
  • Nagoshi, R. N., and B. S. Baker. 1990. Regulation of sex-specific RNA splicing at the Drosophila double sex gene: cis-acting mutation in exon sequences after sex-specific RNA splicing patterns. Genes Dev. 4:89-97.
  • Noble, J. C. S., Z.-Q. Pan, C. Prives, and J. L. Manley. 1987. Splicing of SV40 early pre-mRNA to large T and small t mRNAs utilizes different patterns of lariat branch sites. Cell 50:227-236.
  • Noble, J. C. S., C. Prives, and J. L. Manley. 1988. Alternative splicing of SV40 early pre-mRNA is determined by branch site selection. Genes Dev. 2:1460-1475.
  • Ohshima, Y., and Y. Gotoh. 1987. Signals for the selection of a splice site in pre-mRNA: computer analysis of splice junction sequences and like sequences. J. Mol. Biol. 195:247-259.
  • Reed, R. 1989. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3:2113-2123.
  • Reed, R., and T. Maniatis. 1986. A role for exon sequences and splice-site proximity in splice site selection. Cell 46:681-690.
  • Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84-94.
  • Ruskin, B., and M. R. Green. 1985. Role of the 3′ splice site consensus sequence in mammalian pre-mRNA splicing. Nature (London) 317:732-734.
  • Sabina, R. L., R. Marquetant, N. M. Desai, K. Kaletha, and E. W. Holmes. 1987. Cloning and sequence of rat myoadenylate deaminase cDNA: evidence for tissue-specific and developmental regulation. J. Biol. Chem. 262:12397-12400.
  • Sabina, R. L., T. Morisaki, P. Clarke, R. Eddy, T. B. Shows, C. C. Morton, and E. W. Holmes. 1990. Characterization of the human and rat myoadenylate deaminase genes. J. Biol. Chem. 265:9423-9433.
  • Sabina, R. L., N. Ogasawara, and E. W. Holmes. 1989. Expression of three stage-specific transcripts of AMP deaminase during myogenesis. Mol. Cell. Biol. 9:2244-2246.
  • Shapiro, M. B., and P. Senapathy. 1987. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15:7155-7174.
  • Siebel, C. W., and D. C. Rio. 1990. Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression. Science 248:1200-1208.
  • Smith, C. W. J., and B. Nadal-Ginard. 1989. Mutually exclusive splicing of A-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 56:749-758.
  • Solnick, D., and S. I. Lee. 1987. Amount of RNA secondary structure required to induce an alternative splice. Mol. Cell. Biol. 7:3194-3198.
  • Sosnowski, B. A., J. M. Belote, and M. McKeown. 1989. Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell 58:449-459.
  • Ulfendahl, P. J., J. P. Kreivi, and G. Akusjarvi. 1989. Role of the branch site/3′-splice site region in adenovirus-2 E1A pre-mRNA alternative splicing: evidence for 5′- and 3′-splice site cooperation. Nucleic Acids Res. 17:925-938.
  • Vidaud, M., R. Gattoni, J. Stevenin, D. Vidaud, S. Amselem, J. Chibani, J. Rosa, and M. Goosens. 1989. A 5′ splice-region G-C mutation in exon 1 of the human β-globin gene inhibits pre-mRNA splicing: a mechanism for β-thalassemia. Proc. Natl. Acad. Sci. USA 86:1041-1045.
  • Zhuang, Y., H. Leung, and A. M. Weiner. 1987. The natural 5′ splice site of simian virus 40 large T antigen can be improved by increasing the base complementarity to U1 RNA. Mol. Cell. Biol. 7:3018-3020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.