4
Views
20
CrossRef citations to date
0
Altmetric
Gene Expression

Expression of the DAL80 Gene, Whose Product Is Homologous to the GATA Factors and Is a Negative Regulator of Multiple Nitrogen Catabolic Genes in Saccharomyces cerevisiae, Is Sensitive to Nitrogen Catabolite Repression

&
Pages 6205-6215 | Received 05 Jul 1991, Accepted 25 Sep 1991, Published online: 31 Mar 2023

REFERENCES

  • Alani, Ε., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541-545.
  • Bause, E. 1983. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem. J. 209:331-336.
  • Bossinger, J., R. P. Lawther, and T. G. Cooper. 1974. Nitrogen repression of the allantoin degradative enzymes in Saccharomyces cerevisiae. J. Bacteriol. 118:821-829.
  • Bricmont, P. Α., and T. G. Cooper. 1989. A gene product needed for induction of allantoin system genes in Saccharomyces cerevisiae but not for their transcriptional activation. Mol. Cell. Biol. 9:3869-3877.
  • Bricmont, P. Α., J. R. Daugherty, and T. G. Cooper. 1991. The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:1161-1166.
  • Buckholz, R., and T. G. Cooper. The allantoinase (DAL1) gene of Saccharomyces cerevisiae. Yeast, in press.
  • Bysani, N., J. R. Daugherty, and T. G. Cooper. 1991. Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J. Bacteriol. 173:4977-4982.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145-154.
  • Chang, Y. N., D. L. Y. Dong, G. S. Hayward, and S. D. Hayward. 1990. The Epstein-Barr virus ZTA transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J. Virol. 64:3358-3369.
  • Chisholm, G., and T. G. Cooper. 1982. Isolation and characterization of mutants that produce the allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae. Mol. Cell. Biol. 2:1088-1095.
  • Cooper, T. G. 1982. Nitrogen metabolism in Saccharomyces cerevisiae, p. 39-99. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Cooper, T. G., V. T. Chisholm, H. J. Chou, and H. S. Yoo. 1987. Allantoin transport in Saccharomyces cerevisiae is regulated by two induction systems. J. Bacteriol. 169:4660-4667.
  • Cooper, T. G., D. Ferguson, R. Rai, and N. Bysani. 1990. The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae. J. Bacteriol. 172:1014-1018.
  • Cooper, T. G., and R. P. Lawther. 1973. Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the last intermediate of the pathway. Proc. Natl. Acad. Sci. USA 70:2340-2344.
  • Cooper, T. G., R. Rai, and H.-S. Yoo. 1989. Requirement of upstream activation sequence for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5440-5444.
  • Coornaert, D., S. Vissers, and B. Andre. 1991. The pleiotropic UGA35 (DURL) regulatory gene of Saccharomyces cerevisiae: cloning sequence and identity with the DAL81 gene. Gene 97:163-171.
  • Cunningham, T. S., and T. G. Cooper. 1991. Abstracts, 1991 Yeast Genetics and Molecular Biology Meeting, San Francisco, Calif., p. 215. Genetics Society of America.
  • Feinberg, A. P., and B. Bogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6-13.
  • Fu, Y. H., and G. A. Marzluf. 1990. NIT2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 10:1056-1065.
  • Genbauffe, F. S., and T. G. Cooper. 1986. Induction and repression of the urea amidolyase gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3954-3964.
  • Grand, R. J. A. 1989. Acylation of viral and eucaryotic proteins. Biochem. J. 258:625-638.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells with alkali cations. J. Bacteriol. 153:163-168.
  • Ko, L. J., M. Yamamoto, M. W. Leonard, Κ. Μ. George, P. Ting, and D. G. Engel. 1991. Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol. Cell. Biol. 11:2778-2784.
  • Kovari, L., R. Sumrada, I. Kovari, and T. G. Cooper. 1990. Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:5087-5097.
  • Kudla, B., M. X. Coddick, T. Langdon, Ν. Μ. Martinez-Rossi, C. F. Bennett, S. Siblig, R. W. Davies, and Η. Ν. Arst, Jr. 1990. The regulatory gene are A mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 9:1355-1364.
  • Kuenzel, Ε. Α., J. A. Mulligan, J. Sommercorn, and E. G. Krebs. 1987. Substrate specificity determinants for casein kinase II as deduced from studies with synthetic polypeptides. J. Biol. Chem. 262:9136-9140.
  • Lawther, R. P., and T. G. Cooper. 1975. Kinetics of induced and repressed enzyme synthesis in Saccharomyces cerevisiae. J. Bacteriol. 121:1064-1073.
  • Luche, R., R. Sumrada, and T. G. Cooper. 1990. A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol. Cell. Biol. 10:3884-3895.
  • Mandel, M., and A. Higa. 1970. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53:159-162.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Martin, D. I. K., and S. Orkin. 1990. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf-1. Genes Dev. 4:886-898.
  • Miller, J. H. 1972. Experiments in molecular genetics, p. 403. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Minehart, P., and B. Magasanik. 1991. Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA binding domain. Mol. Cell. Biol. 11:6216-6228.
  • Mitchell, A. P., and B. Magasanik. 1984. Regulation of glutamine-repressible products by the GLN3 function in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2758-2766.
  • Olive, M., J. R. Daugherty, and T. G. Cooper. 1991. DAL82, a second gene required for induction of allantoin system gene transcription in Saccharomyces cerevisiae. J. Bacteriol. 173:255-261.
  • Plumb, M., J. Frampton, J. Wainwright, M. Walker, K. Macleod, G. Goodwin, and P. Harrison. 1989. GATAAG: a cis-control region binding an erythroid-specific nuclear factor with a role in globin and non-globin gene expression. Nucleic Acids Res. 17:73-91.
  • Rai, R., F. S. Genbauffe, and T. G. Cooper. 1988. Structure and transcription of the allantoate permease gene (DAL5) from Saccharomyces cerevisiae. J. Bacteriol. 170:266-271.
  • Rai, R., F. S. Genbauffe, R. A. Sumrada, and T. G. Cooper. 1989. Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:602-608.
  • Rothe, M., V. Nauber, and H. Jackie. 1989. Three hormone receptor-like Drosophila genes encode an identical DNA binding finger? EMBO J. 8:3087-3094.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202-211.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
  • Stiles, J. I. 1983. Use of integrative transformation of yeast in the cloning of mutant genes and large segments of continuous chromosomal sequences. Methods Enzymol. 101:290-300.
  • Sumrada, R., and T. G. Cooper. 1974. Oxaluric acid: a non-metabolizable inducer of the allantoin degradative enzymes in Saccharomyces cerevisiae. J. Bacteriol. 117:1240-1247.
  • Sumrada, R., and T. G. Cooper. 1982. Isolation of the CAR1 gene from Saccharomyces cerevisiae and analysis of its expression. Mol. Cell. Biol. 2:1514-1523.
  • Tschumper, G., and J. Carbon. 1980. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRP1 gene. Gene 10:1157-1166.
  • Turoscy, V., and T. G. Cooper. 1982. Pleiotropic control of five eucaryotic genes by multiple regulatory elements. J. Bacteriol. 151:1237-1246.
  • van Vuuren, H. J. J., J. R. Daugherty, R. Rai, and T. G. Cooper. 1991. Upstream induction sequence, the cis-acting element required for response to the allantoin pathway inducer and enhancement of operation of the nitrogen-regulated upstream activation sequence operation in Saccharomyces cerevisiae. J. Bacteriol. 173:7186-7195.
  • Vissers, S., B. Andre, F. Muyldermans, and M. Grenson. 1990. Induction of the 4-aminobutryate and urea-catabolic pathways in Saccharomyces cerevisiae: specific and common transcriptional regulators. Eur. J. Biochem. 187:611-616.
  • Winston, F., F. Chumley, and G. R. Fink. 1983. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 101:211-228.
  • Woodget, J. R., K. L. Gould, and T. Hunter. 1986. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur. J. Biochem. 161:177-184.
  • Yamamoto, M., L. J. Ko, M. W. Leonard, H. Beug, S. H. Orkin, and J. D. Engel. 1990. Activity and tissue-specific expression of the transcription activator NF-E1 multigene family. Genes Dev. 4:1650-1662.
  • Yoo, H. S., and T. G. Cooper. 1989. The DAL7 promoter consists of multiple elements that cooperatively mediate regulation of the gene’s expression. Mol. Cell. Biol. 9:3231-3243.
  • Yoo, H.-S., and T. G. Cooper. The ureidoglycollate hydrolase (DAL3) gene in Saccharomyces cerevisiae. Yeast, in press.
  • Yoo, H.-S., and T. G. Cooper. Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen catabolite repression in Saccharomyces cerevisiae. Gene, in press.
  • Yoo, H.-S., F. S. Genbauffe, and T. G. Cooper. 1985. Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol. Cell. Biol. 5:2279-2288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.