5
Views
26
CrossRef citations to date
0
Altmetric
Gene Expression

Sequence and Expression of GLN3, a Positive Nitrogen Regulatory Gene of Saccharomyces cerevisiae Encoding a Protein with a Putative Zinc Finger DNA-Binding Domain

&
Pages 6216-6228 | Received 31 May 1991, Accepted 07 Sep 1991, Published online: 31 Mar 2023

REFERENCES

  • Benjamin, P. M., J. Wu, A. P. Mitchell, and B. Magasanik. 1989. Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. Mol. Gen. Genet. 217:370-377.
  • Bolivar, F., R. L. Rodriguez, P. J. Greene, M. C. Betlach, H. L. Heynecker, and H. W. Bover. 1977. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95-113.
  • Botstein, G., S. C. Falco, S. E. Stewart, M. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and R. W. Davis, 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17-24.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145-154.
  • Clark-Adams, C. D., and F. Winston. 1987. The SPT6 gene is essential for growth and is required for δ-mediated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:679-686.
  • Cooper, T. G. 1982. Nitrogen metabolism in Saccharomyces cerevisiae, p. 39-99. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y.
  • Cooper, T. G., D. Ferguson, R. Rai, and N. Bysani. 1990. The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae. J. Bacterid. 172:1014-1018.
  • Coschigano, P. W., and B. Magasanik. 1991. the URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to nitrogen source and has homology to glutathione S-transferases. Mol. Cell. Biol. 11:822-832.
  • Coschigano, P. W., S. M. Miller, and B. Magasanik. 1991. Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:4455-4465.
  • Courchesne, W. E. 1985. Ph.D. dissertation. Massachusetts Institute of Technology, Cambridge.
  • Courchesne, W. E., and B. Magasanik. 1988. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170:708-713.
  • Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1979. A model of evolutionary change in proteins, p. 345-352. In M. O. Dayhoff (ed.), Atlas of protein sequence and structure, vol. 5, suppl. 3. National Biomedical Research Foundation, Washington, D.C.
  • Drillien, R., M. Aigle, and F. Lacroute. 1973. Yeast mutants pleiotropically impaired in the regulation of the two glutamate dehydrogenases. Biochem. Biophys. Res. Commun. 53:367-372.
  • Evans, T., and G. Felsenfeld. 1989. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58:877-885.
  • Forsburg, S. L., and L. Guarente. 1988. Mutational analysis of upstream activation sequence 2 of the CYC1 gene of Saccharomyces cerevisiae: a HAP2-HAP3-responsive site. Mol. Cell. Biol. 8:647-654.
  • Fu, Y.-H., and G. A. Marzluf. 1990. nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 10:1056-1065.
  • Fu, Y.-H., and G. A. Marzluf. 1990. nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a sequence specific DNA binding protein. Proc. Natl. Acad. Sci. USA 87:5331-5335.
  • Grenson, M., E. Dubois, M. Piotrowska, R. Drillien, and M. Aigle. 1974. Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Mol. Gen. Genet. 128:73-85.
  • Guarente, L., and T. Mason. 1983. Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32:1279-1286.
  • Guarente, L., R. R. Yocum, and P. Gifford. 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79:7410-7414.
  • Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 52:248-273.
  • Holmes, D. S., and M. Quigley. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114:193-197.
  • Ito, H., Y. Fukada, K. Murato, and A. Kimiru. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163-168.
  • Koerner, T. J., J. E. Hil, A. M. Myers, and A. Tzagoloff. 1991. High-expression vectors with multiple cloning sites for construction of tprE fusion genes: pΑΤΗ vectors. Methods Enzymol. 194:477-490.
  • Kudla, B., M. X. Caddick, T. Langdon, Ν. Μ. Martinez-Rossi, C. F. Bennett, S. Sibley, R. W. Davies, and Η. Ν. Arst, Jr. 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 9:1355-1364.
  • Kuo, C.-L., and J. L. Campbell. 1983. Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Mol. Cell. Biol. 3:1730-1737.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.
  • Legrain, C., S. Vissers, E. Dubois, M. Legrain, and J.-M. Wiame. 1982. Regulation of glutamine synthetase from Saccharomyces cerevisiae by repression, inactivation and proteolysis. Eur. J. Biochem. 123:611-616.
  • Lipman, D. J., and W. J. Pearson. 1985. Rapid and sensitive protein similarity searches. Science 227:1435-1441.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Martin, D. I. K., S.-F. Tsai, and S. H. Orkin. 1989. Increased gamma-globin expression in a non-deletion HPFH mediated by an erythroid-specific DNA binding factor. Nature (London) 338:435-438.
  • Mignotte, V., L. Wall, E. deBoer, F. Grosveld, and P.-H. Romeo. 1989. Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Res. 17:37-54.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Miller, S. M., and B. Magasanik. 1990. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J. Bacteriol. 172:4927-4935.
  • Miller, S. M., and B. Magasanik. 1991. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:6229-6247.
  • Minehart, P. L. 1991. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge.
  • Mitchell, A. P., and S. W. Ludmerer. 1984. Identification of a glutaminyl-tRNA synthetase mutation in Saccharomyces cerevisiae. J. Bacteriol. 158:530-534.
  • Mitchell, A. P., and B. Magasanik. 1983. Purification and properties of glutamine synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 258:119-124.
  • Mitchell, A. P., and B. Magasanik. 1984. Biochemical and physiological aspects of glutamine synthetase inactivation in Saccharomyces cerevisiae. J. Biol. Chem. 259:12054-12062.
  • Mitchell, A. P., and B. Magasanik. 1984. Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2758-2767.
  • Mitchell, A. P., and B. Magasanik. 1984. Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2767-2773.
  • Mortimer, R. K., and D. C. Hawthorne. 1969. Yeast genetics, p. 385-460. In A. H. Rose and J. S. Harrison (ed.), The yeasts, vol. 1. Academic Press, Inc., New York.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354-6358.
  • Pevny, L., M. C. Simon, E. Robertson, W. H. Klein, S.-F. Tsai, V. D’Agati, S. H. Orkin, and F. Constantt. 1991. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature (London) 349:257-260.
  • Ptashne, M. 1988. How eukaryotic transcriptional activators work. Nature (London) 335:683-689.
  • Rai, R., F. S. Genbauffe, R. A. Sumrada, and T. G. Cooper. 1989. Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:602-608.
  • Rose, M., and D. Botstein. 1983. Construction and use of gene fusions to lacZ (β-galactosidase) that are expressed in yeast. Methods Enzymol. 101:167-180.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202-210.
  • Sanger, G., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1978. Manual for a course: methods in yeast genetics, revised edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Spindler, K. R., D. S. E. Rosser, and A. J. Berk. 1984. Analysis of adenovirus transforming proteins from early regions 1A and 1B with antisera to inducible fusion antigens produced in Escherichia coli. J. Virol. 49:132-141.
  • Stanbrough, M. (Massachusetts Institute of Technology). 1991. Personal communication.
  • Struhl, K. D., D. T. Stinchcomb, S. Scherer, and R. W. Davis. 1979. High frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035-1039.
  • Towbin, Η., Τ. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350-4354.
  • Tsai, S.-F., D. I. K. Martin, L. I. Zon, A. D. D’Andrea, G. G. Wong, and S. H. Orkin. 1989. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature (London) 339:446-451.
  • Wall, L., E. deBoer, and F. Grosveld. 1988. The human β-globin gene 3′ enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev. 2:1089-1100.
  • Wiame, J. M., M. Grenson, and H. N. Arst, Jr. 1985. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv. Microb. Physiol. 26:1-88.
  • Winston, F., F. Chumley, and G. R. Fink. 1983. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 101:211-228.
  • Yanofeky, C., T. Platt, I. P. Crawford, B. P. Nichols, G. E. Christie, H. Horowitz, M. VanCleemput, and A. M. Wu. 1989. The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res. 9:6647-6668.
  • Youssoufian, H., L. Zon, S. H. Orkin, A. D. d’Andrea, and H. F. Lodish. 1990. Structure and transcription of the mouse erythropoietin receptor gene. Mol. Cell. Biol. 10:3675-3682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.