2
Views
2
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Genetic and Physical Analyses of Sister Chromatid Exchange in Yeast Meiosis

, &
Pages 6328-6336 | Received 27 Jun 1991, Accepted 20 Sep 1991, Published online: 31 Mar 2023

REFERENCES

  • Alani, E., R. Padmore, and N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419-436.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Green, New York.
  • Cao, L., E. Alani, and N. Kleckner. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089-1101.
  • Dawson, D. S. Unpublished data.
  • Dawson, D. S., A. W. Murray, and J. W. Szostak. 1986. An alternative pathway for meiotic chromosome segregation in yeast. Science 234:713-717.
  • Game, J. C., K. C. Sitney, V. E. Cook, and R. K. Mortimer. 1989. Use of a ring chromosome and pulsed-field gels to study interhomolog recombination double-strand DNA breaks and sister-chromatid exchange in yeast. Genetics 123:695-714.
  • Game, J. C., T. J. Zamb, R. J. Braun, M. Resnick, and R. M. Roth. 1980. The role of radiation RAD genes in meiotic recombination in yeast Saccharomyces cerevisiae. Genetics 94:51-68.
  • Giroux, C. N., M. E. Dresser, and H. F. Tiano. 1989. Genetic control of chromosome synapsis in yeast meiosis. Genome 31:88-94.
  • Gottlieb, S., J. Wagstaff, and R. E. Esposito. 1989. Evidence for two pathways of meiotic intrachromosomal recombination in yeast. Proc. Natl. Acad. Sci. USA 86:7072-7076.
  • Guacci, V., and D. B. Kaback. 1991. Distributive disjunction of authentic chromosomes in Saccharomyces cerevisiae. Genetics 127:475-488.
  • Haber, J. E., P. C. Thorburn, and D. Rogers. 1984. Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106:185-206.
  • Hieter, P., C. Mann, M. Snyder, and R. W. Davis. 1985. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40:381-392.
  • Jackson, J. Α., and G. R. Fink. 1985. Meiotic recombination between duplicated genetic elements in Saccharomyces cerevisiae. Genetics 109:303-332.
  • Kaback, D. B. 1989. Meiotic segregation of circular plasmid minichromosomes from intact chromosomes in Saccharomyces cerevisiae. Curr. Genet. 15:385-392.
  • Kane, S., and R. Roth. 1974. Carbohydrate metabolism during ascospore development in yeast. J. Bacteriol. 118:8-14.
  • Klapholz, S., C. S. Waddell, and R. E. Esposito. 1985. The role of the SPO11 gene in meiotic recombination in yeast Saccharomyces cerevisiae. Genetics 110:187-216.
  • Koshland, D., J. C. Kent, and L. H. Hartwell. 1985. Genetic analysis of the mitotic transmission of minichromosomes. Cell 40:393-403.
  • Kreuzer, K. N., and N. R. Cozzarelli. 1980. Formation and resolution of DNA catenanes by DNA gyrase. Cell 20:245-254.
  • Malone, R. E., and R. E. Esposito. 1981. Recombinationless meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:891-901.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1983. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mann, C., and R. W. Davis. 1983. Instability of dicentric plasmids in yeast. Proc. Natl. Acad. Sci. USA 80:228-232.
  • Mizuuchi, K., L. M. Fisher, M. H. O’Dea, and M. Gellert. 1980. DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc. Natl. Acad. Sci. USA 77:1847-1851.
  • Murray, A. W., N. P. Schultes, and J. W. Szostak. 1986. Chromosome length controls mitotic chromosome segregation in yeast. Cell 45:529-536.
  • Murray, A. W., and J. W. Szostak. 1983. Pedigree analysis of plasmid segregation in yeast Saccharomyces cerevisiae. Cell 34:961-970.
  • Murray, A. W., and J. W. Szostak. 1985. Chromosome segregation in mitosis and meiosis. Annu. Rev. Cell Biol. 1:289-315.
  • Nicolas, Α., D. Treco, N. P. Schultes, and J. W. Szostak. 1989. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature (London) 338:35-39.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1983. Genetic application of yeast transformation with linear and gapped plasmids. Methods Enzymol. 101:228-245.
  • Petes, T. D. 1980. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19:765-774.
  • Petes, T. D., R. Malone, and L. S. Symington. 1990. Recombination in yeast. In molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202-211.
  • Schultes, N. P., and J. W. Szostak. 1990. Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics 126:813-822.
  • Schultes, N. P., and J. W. Szostak. 1991. A poly(dA · dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:322-328.
  • Sherman, F., G. Fink, and J. Hicks. 1978. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sokal, R. R., and F. J. Rohlf. 1969. Biometry, p. 549-620. W. H. Freeman & Co., San Francisco.
  • Sun, H., and J. W. Szostak. Unpublished data.
  • Sun, H., D. Treco, N. P. Schultes, and J. W. Szostak. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature (London) 338:87-90.
  • Sun, H., D. Treco, and J. W. Szostak. 1991. Extensive 3-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155-1161.
  • Sundin, O., and A. Varshavsky. 1981. Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21:103-114.
  • Wagstaff, J. E., S. Klapholz, C. S. Waddell, L. Jensen, and R. E. Esposito. 1985. Meiotic exchange within and between chromosomes requires a common REC function in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:3532-3544.
  • Wang, H.-T., S. Frackman, J. Kowalisyn, R. E. Esposito, and R. Elder. 1987. Developmental regulation of SP013, a gene required for separation of homologous chromosomes at meiosis I. Mol. Cell. Biol. 7:1425-1435.
  • Wang, J. C., L. J. Peck, and K. Becherer. 1982. DNA super-coiling and its effects on DNA structure and function. Cold Spring Harbor Symp. Quant. Biol. 47:85-91.
  • Weinert, Τ. Α., and L. H. Hartwell. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317-322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.