11
Views
30
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

A Unique Pathway of Double-Strand Break Repair Operates in Tandemly Repeated Genes

&
Pages 1222-1231 | Received 10 Sep 1990, Accepted 03 Dec 1990, Published online: 31 Mar 2023

REFERENCES

  • Alani, E., R. Padmore, and N. Kleckner. 1990. Analysis of wild type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419-436.
  • Anderson, R. A., and S. L. Eliason. 1986. Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing. Mol. Cell. Biol. 6:3246-3252.
  • Bell, G. I., L. J. DeGennaro, D. H. Gelfand, R. J. Bishop, P. Valenzuela, and W. J. Rutter. 1977. Ribosomal RNA genes of Saccharomyces cerevisiae. I. Physical map of the repeating unit and location of the regions coding for 5S, 5.8S, 18S, and 25S ribosomal RNAs. J. Biol. Chem. 252:8118-8125.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345-346.
  • Byers, B., and L. Goetsch. 1975. Electron microscopic observation on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 72:5056-5060.
  • Cao, L., E. Alani, and N. Kleckner. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089-1101.
  • Chakrabarti, S., and M. M. Seidman. 1986. Intramolecular recombination between transfected repeated sequences in mammalian cells is nonconservative. Mol. Cell. Biol. 6:2520-2526.
  • Christman, M. F., F. S. Dietrich, and G. R. Fink. 1988. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55:413-425.
  • Chu, G., D. Vollrath, and R. W. Davis. 1986. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582-1585.
  • Dresser, M. E., and C. N. Giroux. 1988. Meiotic chromosome behavior in spread preparations of yeast. J. Cell Biol. 106:567-573.
  • Engebrecht, J., and G. S. Roeder. 1989. Yeast mer1 mutants display reduced levels of meiotic recombination. Genetics 121:237-247.
  • Fogel, S., and J. W. Welch. 1982. Tandem gene amplification mediates copper resistance in yeast. Proc. Natl. Acad. Sci. USA 79:5342-5346.
  • Game, J. C., T. J. Zamb, R. J. Braun, M. A. Resnick, and R. M. Roth. 1980. The role of radiation (rad) genes in meiotic recombination in yeast. Genetics 94:51-68.
  • Gottlieb, S., and R. E. Esposito. 1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination of ribosomal DNA. Cell 56:771-776.
  • Gottlieb, S., J. Wagstaff, and R. E. Esposito. 1989. Evidence for two pathways of meiotic intrachromosomal recombination in yeast. Proc. Natl. Acad. Sci. USA 86:7072-7076.
  • Haber, J. E., and M. Hearn. 1985. RAD52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosome loss. Genetics 111:7-22.
  • Jackson, J. A., and G. R. Fink. 1981. Gene conversion between duplicated genetic elements in yeast. Nature (London) 292:306-311.
  • Jensen, R., G. F. Sprague, and I. Herskowitz. 1983. Regulation of yeast mating type interconversion: feedback control of HO expression by the mating type locus. Proc. Natl. Acad. Sci. USA 80:3035-3039.
  • Karin, M., R. Najarian, A. Haslinger, P. Valenzuela, J. Welch, and S. Fogel. 1984. Primary structure and transcription of an amplified genetic locus: the CUP1 locus of yeast. Proc. Natl. Acad. Sci. USA 81:337-341.
  • Keil, R. L., and G. S. Roeder. 1984. Cis-acting recombinationstimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell 39:377-386.
  • Klein, H. L. 1988. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics 120:367-377.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4:1020-1034.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1990. Repair of doublestranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol. Cell. Biol. 10:113-119.
  • Malone, R. E. 1983. Multiple mutant analysis of recombination in yeast. Mol. Gen. Genet. 189:405-412.
  • Malone, R. E., and R. E. Esposito. 1980. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc. Natl. Acad. Sci. USA 77:503-507.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Maryon, E., and D. Carroll. 1989. Degradation of linear DNA by a strand-specific exonuclease activity in Xenopus laevis oocytes. Mol. Cell. Biol. 9:4862-4871.
  • Nickoloff, J. A., J. D. Singer, M. F. Hoekstra, and F. Heffron. 1989. Double-strand breaks stimulate alternative mechanisms of recombination repair. J. Mol. Biol. 207:527-541.
  • Orr-Weaver, T. L., A. Nicolas, and J. W. Szostak. 1988. Gene conversion adjacent to regions of double-strand break repair. Mol. Cell. Biol. 8:5292-5298.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354-6358.
  • Petes, T. D. 1979. Meiotic mapping of yeast ribosomal deoxyribonucleic acid on chromosome XII. J. Bacteriol. 138:185-192.
  • Petes, T. D., and D. Botstein. 1977. Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc. Natl. Acad. Sci. USA 74:5091-5095.
  • Prakash, L., and P. Taillon-Miller. 1981. Effects of the rad52 gene on sister chromatid recombination in Saccharomyces cerevisiae. Curr. Genet. 3:247-250.
  • Prakash, S., L. Prakash, W. Burke, and B. A. Montelone. 1980. Effect of the RAD52 gene on recombination in Saccharomyces cerevisiae. Genetics 94:31-50.
  • Ray, A., N. Machin, and F. W. Stahl. 1989. A DNA double chain break stimulates triparental recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86:6225-6229.
  • Ray, A., I. Siddiqi, A. L. Kolodkin, and F. W. Stahl. 1988. Intrachromosomal gene conversion induced by a DNA doublestrand break in Saccharomyces cerevisiae. J. Mol. Biol. 201:247-260.
  • Resnick, M. A. 1969. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics 62:519-531.
  • Resnick, M. A. 1975. The repair of double strand breaks in chromosomal DNA of yeast, p. 549-556. In P. C. Hanawalt and R. B. Setlow (ed.), Molecular mechanisms for repair of DNA. Plenum Press, New York.
  • Resnick, M. A. 1976. The repair of double-strand breaks in DNA: a model involving recombination. J. Theor. Biol. 59:97-106.
  • Resnick, M. A., and P. Martin. 1976. The repair of doublestrand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143:119-129.
  • Rockmill, B., and G. S. Roeder. 1988. RED1: a yeast gene required for the segregation of chromosomes during the reductional division of meiosis. Proc. Natl. Acad. Sci. USA 85:6057-6061.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202-211.
  • Rudin, N., and J. E. Haber. 1988. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8:3918-3928.
  • Rudin, N., E. Sugarman, and J. E. Haber. 1989. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519-534.
  • Schild, D., I. L. Calderon, R. Contopoulou, and R. K. Mortimer. 1983. Cloning of yeast recombination repair genes and evidence that several are nonessential genes, p. 417-427. In E. C. Friedberg and B. A. Bridges (ed.), Cellular responses to DNA damage. Alan R. Liss, New York.
  • Schild, D., B. Konforti, C. Perez, W. Gish, and R. Mortimer. 1983. Isolation and characterization of yeast DNA repair genes. I. Cloning of the RAD52 gene. Curr. Genet. 7:85-92.
  • Schweizer, E., C. Mackechnie, and H. O. Halvorson. 1969. The redundancy of ribosomal and transfer RNA genes in Saccharomyces cerevisiae. J. Mol. Biol. 40:261-277.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics: laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sokal, R. R., and R. J. Rohlf. 1981. Biometry. W. H. Freeman and Co., New York.
  • Stillman, D. J., A. T. Bankier, A. Seddon, E. G. Groenhout, and K. A. Nasmyth. 1988. Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene. EMBO J. 7:485-494.
  • Strathern, J. N., A. J. S. Klar, J. B. Hicks, J. A. Abraham, J. M. Ivy, K. A. Nasmyth, and C. McGill. 1982. Homothallic switching of yeast mating type cassettes is initiated by a double-strand cut in the MAT locus. Cell 31:183-192.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and R. W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid molecules. Proc. Natl. Acad. Sci. USA 76:1035-1039.
  • Sun, H., D. Treco, N. P. Schultes, and J. W. Szostak. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature (London) 338:87-90.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33:25-35.
  • Taylor, A. F., D. W. Schultz, A. S. Ponticelli, and G. R. Smith. 1985. RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell 41:153-163.
  • Thaler, D. S., and F. W. Stahl. 1988. DNA double-chain breaks in recombination of phage λ and of yeast. Annu. Rev. Genet. 22:169-197.
  • Weiffenbach, B., and J. E. Haber. 1981. Homothallic mating type switching generates lethal chromosome breaks in rad52 strains of Saccharomyces cerevisiae. Mol. Cell. Biol. 1:522-534.
  • Weiffenbach, B., D. T. Rogers, J. E. Haber, M. Zoller, D. W. Russell, and M. Smith. 1983. Deletions and single base pair changes in the yeast mating type locus that prevent homothallic mating type conversions. Proc. Natl. Acad. Sci. USA 80:3401-3405.
  • White, C. I., and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663-673.
  • Zamb, T. J., and T. D. Petes. 1981. Unequal sister-strand recombination within yeast ribosomal DNA does not require the RAD52 gene product. Curr. Genet. 3:125-132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.