0
Views
1
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

The LaBelle Mitochondrial Plasmid of Neurospora intermedia Encodes a Novel DNA Polymerase That May Be Derived from a Reverse Transcriptase

&
Pages 1696-1706 | Received 17 Oct 1990, Accepted 21 Dec 1990, Published online: 31 Mar 2023

REFERENCES

  • Akins, R. A., D. M. Grant, L. L. Stohl, D. A. Bottorff, F. E. Nargang, and A. M. Lambowitz. 1988. Nucleotide sequence of the Varkud mitochondrial plasmid of Neurospora and synthesis of a hybrid transcript with a 5′ leader derived from mitochondrial RNA. J. Mol. Biol. 204:1-25.
  • Akins, R. A., R. L. Kelley, and A. M. Lambowitz. 1986. Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochon-dria. Cell 47:505-516.
  • Akins, R. A., R. L. Kelley, and A. M. Lambowitz. 1989. Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription. Mol. Cell. Biol. 9:678-691.
  • Akins, R. A., and A. M. Lambowitz. 1984. The [poky] mutant of Neurospora contains a 4-base-pair deletion at the 5′ end of the mitochondrial small rRNA. Proc. Natl. Acad. Sci. USA 81:3791-3795.
  • Argos, P. 1988. A sequence motif in many polymerases. Nucleic Acids Res. 16:9909-9916.
  • Bemad, A., L. Blanco, J. M. Lazaro, G. Martin, and M. Salas. 1989. A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219-228.
  • Bemad, A., A. Zaballos, M. Salas, and L. Blanco. 1987. Structural and functional relationships between procaryotic and eu- caryotic DNA polymerases. EMBO J. 6:4219-4225.
  • Chow, T. Y.-K., and M. J. Fraser. 1983. Purification and properties of single strand DNA-binding endo-exonuclease of Neurospora crassa. J. Biol. Chem. 258:12010-12018.
  • Collins, R. A. (University of Toronto). Personal communication.
  • Collins, R. A., and A. M. Lambowitz. 1983. Structural variations and optional introns in the mitochondrial DNAs of Neurospora strains isolated from nature. Plasmid 9:53-70.
  • Collins, R. A., L. L. Stohl, M. D. Cole, and A. M. Lambowitz. 1981. Characterization of a novel plasmid DNA found in mitochondria of N. crassa. Cell 24:443-452.
  • Davis, R. H., and F. J. de Serres. 1970. Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 17A:79-143.
  • Eickbush, T. (University of Rochester). Personal communication.
  • Foury, F. 1989. Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J. Biol. Chem. 264:20552-20560.
  • Fry, M., and L. A. Loeb. 1986. Animal cell DNA polymerases. CRC Press, Inc., Boca Raton, Fla.
  • Garriga, G., H. Bertrand, and A. M. Lambowitz. 1984. RNA splicing in Neurospora mitochondria: nuclear mutants defective in both splicing and 3′ end synthesis of the large rRNA. Cell 36:623-634.
  • Garriga, G., and A. M. Lambowitz. 1986. Protein-dependent splicing of a group I intron in ribonucleoprotein particles and soluble fractions. Cell 46:669-680.
  • Gerard, G. F. 1975. Poly (2′-0-methylcytidylate)-oligodeox- yguanylate, a template-primer specific for reverse transcriptase, is not utilized by Hela cell γDNA polymerases. Biochem. Biophys. Res. Commun. 63:706-711.
  • Gerard, G. F., and D. P. Grandgenett. 1980. Retrovirus reverse transcriptase, p. 345-394. In J. Stephenson (ed.), Molecular biology of RNA tumor viruses. Academic Press, Inc., New York.
  • Insdorf, N. F., and D. F. Bogenhagen. 1989. DNA polymerase γfrom Xenopus laevis. 1. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure. J. Biol. Chem. 264:21491-21497.
  • Kamer, G., and P. Argos. 1984. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 12:7269-7282.
  • Kennell, J. C., and A. M. Lambowitz. Unpublished data.
  • Kuiper, M. T. R., and A. M. Lambowitz. 1988. A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora. Cell 55:693-704.
  • Kuiper, M. T. R., J. R. Sabourin, and A. M. Lambowitz. 1990. Identification of the reverse transcriptase encoded by the Mauriceville and Varkud mitochondrial plasmids of Neurospora. J. Biol. Chem. 265:6936-6943.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.
  • Lambowitz, A. M. 1979. Preparation and analysis of mitochondrial ribosomes. Methods Enzymol. 59:421-433.
  • Lambowitz, A. M., R. A. Akins, R. L. Kelley, S. Pande, and F. E. Nargang. 1986. Mitochondrial plasmids of Neurospora and other filamentous fungi, p. 83-92. In R. B. Wickner, A. Hinnebusch, A. M. Lambowitz, I. C. Gunsalus, and A. Hollaender (ed.), Extrachromosomal elements in lower eukaryotes. Plenum Press, New York.
  • Lambowitz, A. M., R. J. LaPolla, and R. A. Collins. 1979. Mitochondrial ribosome assembly in Neurospora: two-dimensional gel electrophoretic analysis of mitochondrial ribosomal proteins. J. Cell Biol. 82:17-31.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Meinhardt, F., F. Kempken, J. Kämper, and K. Esser. 1990. Linear plasmids among eukaryotes: fundamentals and application. Curr. Genet. 17:89-95.
  • Michel, F., and B. F. Lang. 1985. Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature (London) 316:641-643.
  • Nargang, F. E., J. B. Bell, L. L. Stohl, and A. M. Lambowitz. 1984. The DNA sequence and genetic organization of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell 38:441-453.
  • Natvig, D. O., G. May, and J. W. Taylor. 1984. Distribution and evolutionary significance of mitochondrial plasmids in Neurospora spp. J. Bacteriol. 159:288-293.
  • Pande, S., E. G. Lemire, and F. E. Nargang. 1989. The mitochondrial plasmid from Neurospora intermedia strain La- Belle-1b contains a long open reading frame with blocks of amino acids characteristic of reverse transcriptases and related proteins. Nucleic Acids Res. 17:2023-2042.
  • Samac, D. A., and S. A. Leong. 1989. Mitochondrial plasmids of filamentous fungi: characteristics and use in transformation vectors. Mol. Plant-Microbe Interact. 2:155-159.
  • Stark, M. J. R., A. J. Mileham, M. A. Romanos, and A. Boyd. 1984. Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res. 12:6011-6030.
  • Stohl, L. L., R. A. Akins, and A. M. Lambowitz. 1984. Characterization of deletion derivative of an autonomously replicating Neurospora plasmid. Nucleic Acids Res. 12:6169-6178.
  • Stohl, L. L., R. A. Collins, M. D. Cole, and A. M. Lambowitz. 1982. Characterization of two new plasmid DNAs found in mitochondria of wild-type Neurospora intermedia strains. Nucleic Acids Res. 10:1439-1458.
  • Stohl, L. L., and A. M. Lambowitz. 1983. Construction of a shuttle vector for the filamentous fungus, Neurospora crassa. Proc. Natl. Acad. Sci. USA 80:1058-1062.
  • Taylor, J. W., B. D. Smolich, and G. May. 1985. An evolutionary comparison of homologous mitochondrial plasmid DNAs from three Neurospora species. Mol. Gen. Genet. 201:161-167.
  • Uyemura, D., and I. R. Lehmann. 1976. Biochemical characterization of mutant forms of DNA polymerase I from Escherichia coli.J. Biol. Chem. 251:4078-4084.
  • Xiong, Y., and T. H. Eickbush. 1988. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol. Biol. Evol. 5:675-690.
  • Xiong, Y., and T. H. Eickbush. 1990. Origin and evolution of retroelements based on their reverse transcriptase sequences. EMBO J. 9:3353-3362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.