2
Views
33
CrossRef citations to date
0
Altmetric
Gene Expression

Pancreatic β-Cell-Type-Specific Transcription of the Insulin Gene Is Mediated by Basic Helix-Loop-Helix DNA-Binding Proteins

, , , &
Pages 1734-1738 | Received 20 Aug 1990, Accepted 27 Nov 1990, Published online: 31 Mar 2023

REFERENCES

  • Alonso, M. C., and C. J. Cabrera. 1988. The aschaete-scute gene complex of Drosphila melanogaster comprises four homologous genes. EMBO J 7:2585-2591.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helixloop-helix binding proteins. Cell 61:49-59.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from myoDl induces myogenic conversion in 10T1/2 cell. EMBO J. 8:701-709.
  • Brennan, T. J., and E. N. Ohlson. 1990. Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev. 4:582-595.
  • Bushkin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor which binds to the muscle-specific enhancer of the muscle creatine kinase gene. Mol. Cell. Biol. 9:2627-2640.
  • Cabrera, C. J., A. Martinez-Arias, and M. Bate. 1987. The expression of three members of the gene aschaete-scute complex correlates with neuroblast segregation in Drosophila. Cell 50:425-133.
  • Caudy, M., E. H. Grell, C. Dambly-Chaudiere, A. Ghysen, L. Y. Jan, and Y. N. Jan. 1988. The maternal sex determination gene daughterless has zygotic activity necessary for the formation of peripheral neurons in Drosophila. Genes Dev. 2:843-852.
  • Caudy, M., H. Vassin, M. Brand, R. Tuma, L. Y. Jan, and Y. N. Jan. 1988. daughterless, a Drosphila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the aschaete-scute complex. Cell 2:1061-1067.
  • Chan, S. J., V. Episkopou, S. Zeitlin, S. K. Karathanasis, A. MacKrell, D. F. Steiner, and A. Efstratiadis. 1984. Guinea pig preproinsulin gene: an evolutionary compromise? Proc. Natl. Acad. Sci. USA 81:5046-5050.
  • Clark, J. L., and D. F. Steiner. 1969. Insulin biosynthesis in the rat: demonstration of two proinsulins. Proc. Natl. Acad. Sci. USA 62:278-285.
  • Cronmiller, C., P. Schedl, and T. W. Cline. 1988. Molecular characterization of daughterless, a Drosphila sex determination gene with multiple roles in development. Genes Dev. 2:1666-1676.
  • Crowe, D. T., and M. Tsai. 1989. Mutagenesis of the rat insulin II 5′-flanking region defines sequences important for expression in HIT cells. Mol. Cell. Biol. 9:1784-1789.
  • Davis, R. L., P.-F. Cheng, A. B. Lassar, and H. Weintraub. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733-746.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987-1000.
  • Edlund, T., M. D. Walker, P. J. Barr, and W. J. Rutter. 1985. Cell-specific expression of the rat insulin gene: evidence for the role of two distinct 5′ flanking sequences. Science 230:912-916.
  • Efrat, S., S. Linde, H. Kofod, D. Spector, M. Delannoy, S. Grant, D. Hanahan, and S. Baekkeskov. 1988. Beta cell lines derived from transgenic mice expressing a hybrid insulin geneoncogene. Proc. Natl. Acad. Sci. USA 85:9037-9041.
  • Ephrussi, A., G. M. Church, S. Tonegawa, and W. Gilbert. 1985. B-lineage specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134-140.
  • Episkopou, V., A. J. M. Murphy, and A. Efstratiadis. 1984. Cell-specific expression of a selectable hybrid gene. Proc. Natl. Acad. Sci. USA 81:4657-1661.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes that express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044-1051.
  • Hanahan, D. 1985. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/ simian virus 40 oncogenes. Nature (London) 315:115-122.
  • Henthorn, P., M. Kiledijian, and T. Kadesch. 1990. Two transcription factors that bind to the immunoglobulin enhancer µE5/κE2 motif. Science 247:467-470.
  • Hwung, Y.-P., Y.-Z. Gu, and M.-J. Tsai. 1990. Cooperativity of sequence elements mediates tissue specificity of the rat insulin II gene. Mol. Cell. Biol. 10:1784-1788.
  • Karlsson, O., T. Edlund, J. B. Moss, W. J. Rutter, and M. D. Walker. 1987. A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer. Proc. Natl. Acad. Sci. USA 84:8819-8823.
  • Karlsson, O., M. D. Walker, W. J. Rutter, and T. Edlund. 1989. Individual protein-binding domains of the insulin gene enhancer positively activate β-cell-specific transcription. Mol. Cell. Biol. 9:823-827.
  • Klaembt, C., E. Knust, K. Tietze, and J. A. Campos-Ortega. 1989. Closely related transcripts encoded by the neurogenic gene complex Enhancer of split of Drosophila melanogaster. EMBO J. 8:203-210.
  • Lassar, A. B., J. N. Bushkin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823-831.
  • Lenardo, M., J. W. Pierce, and D. Baltimore. 1987. Proteinbinding sites in Ig enhancers determine transcriptional activity and inducibility. Science 236:1573-1577.
  • Moss, L. G., J. B. Moss, and W. J. Rutter. 1988. Systematic binding analysis of the insulin gene transcription control region: insulin and immunoglobulin enhancers utilize similar transactivators. Mol. Cell. Biol. 8:2620-2627.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777-783.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Cudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. Buskin, S. D. Hasuschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537-544.
  • Ohlsson, H., and T. Edlund. 1988. A β-cell-specific protein binds to two major regulatory sequences of the insulin gene enhancer. Proc. Natl. Acad. Sci. USA 85:4228-4231.
  • Rushlow, C. A., A. Hogan, S. M. Pinchin, K. M. Howe, M. Lardelli, and D. Ish-Horowicz. 1989. The Drosophila hairy protein acts in both segmentation and bristle pattern and shows homology to N-myc. EMBO J. 8:3095-3103.
  • Shibasaki, Y., H. Sakura, F. Takaku, and M. Kasuga. 1990. Insulin enhancer binding protein has helix-loop-helix structure. Biochem. Biophys. Res. Commun. 170:314-321.
  • Stein, R. Unpublished data.
  • Tapscott, S. J., R. L. Davis, M. J. Thayer, P. F. Cheng, H. Weintraub, and A. D. Lassar. 1988. MyoD: a nuclear phosphoprotein requiring myc homology region to convert fibroblasts to myoblasts. Science 242:405-411.
  • Thisse, B., C. Stooetzel, C. Gorostiza-Thisse, and F. Perrin-Schmitt. 1988. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J. 7:2175-2183.
  • Villares, R., and C. J. Cabrera. 1987. The aschaete-scute complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50:415-424.
  • Walker, M. D., T. Edlund, A. M. Boulet, and W. J. Rutter. 1983. Cell-specific expression controlled by the 5′-flanking region of insulin and chymotrypsin genes. Nature (London) 306:557-561.
  • Walker, M. D., C. W. Park, A. Rosen, and A. Aronheim. 1990. A cDNA from a mouse pancreatic β cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res. 18:1159-1166.
  • Westin, G., T. Gerster, M. M. Muller, G. Schaffner, and W. Schaffner. 1987. OVEC, a versatile system to study transcription in mammalian cells and cell-free extracts. Nucleic Acids Res. 15:6787-6798.
  • Whelan, J., S. R. Cordle, E. Henderson, P. A. Weil, and R. Stein. 1990. Identification of a pancreatic β-cell insulin gene transcription factor that binds to and appears to activate celltype-specific expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Mol. Cell. Biol. 10:1564-1572.
  • Whelan, J., D. Poon, P. A. Weil, and R. Stein. 1989. Pancreatic β-cell-type-specific expression of the rat insulin II gene is controlled by positive and negative transcriptional elements. Mol. Cell. Biol. 9:3253-3259.
  • Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has domain homologous to MyoD. Cell 56:607-617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.