0
Views
6
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Identification of Single-Stranded-DNA-Binding Proteins That Interact with Muscle Gene Elements

, &
Pages 1944-1953 | Received 24 Sep 1990, Accepted 04 Jan 1991, Published online: 31 Mar 2023

REFERENCES

  • Bergsma, D. J., J. M. Grichnik, L. M. A. Gossett, and R. J. Schwartz. 1986. Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal a-actin gene. Mol. Cell. Biol. 6:2462–2475.
  • Boles, C., and M. Hogan. 1987. DNA structure equilibria in the human c-myc gene. Biochemistry 26:367–376.
  • Brennan, T. J., and E. N. Olson. 1990. Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev. 4:582–595.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 6:2627–2640.
  • Chase, J. W., and K. R. Williams. 1986. Single-stranded DNA binding proteins required for DNA replication. Annu. Rev. Biochem. 55:103–136.
  • Chow, K., and R. J. Schwartz. 1990. A combination of closely associated positive and negative cis-acting promoter elements regulates transcription of the skeletal α-actin gene. Mol. Cell. Biol. 10:528–538.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Donoghue, M., H. Ernst, B. Nadal-Ginard, and N. Rosenthal. 1988. A muscle-specific enhancer in the myosin light chain 1/3 gene locus. Genes Dev. 2:1779–1790.
  • Fischbach, G. D. 1972. Synapse formation between dissociated nerve and muscle cells in low density cultures. Dev. Biol. 26:407–429.
  • Fried, M. G., and D. M. Crothers. 1983. CAP and RNA polymerase interactions with the lac promoter: binding stochi- ometry and long range effects. Nucleic Acids Res. 11:141–158.
  • Gilman, M. Z., R. N. Wilson, and R. A. Weinberg. 1986. Multiple protein binding sites in the 5′-flanking region regulate c-fos expression. Mol. Cell. Biol. 6:4305–4316.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gustafson, T. A., A. Taylor, and L. Kedes. 1989. DNA bending is induced by a transcription factor that interacts with the human c-FOS and α-actin promoters. Proc. Natl. Acad. Sci. USA 86:2162–2166.
  • Herr, W. 1985. Diethyl pyrocarbonate: a chemical probe for secondary structure in negatively supercoiled DNA. Proc. Natl. Acad. Sci. USA 82:8009–8013.
  • Horikoshi, M., C. K. Wang, H. Fujii, J. A. Cromlish, P. A. Weil, and R. G. Roeder. 1989. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Nature (London) 341:299–303.
  • Htun, H., and J. E. Dahlberg. 1989. Topology and formation of triple-stranded H-DNA. Science 243:1571–1576.
  • Hu, M. C.-T., S. B. Sharp, and N. Davidson. 1986. The complete sequence of the mouse skeletal α-actin gene reveals several conserved and inverted repeat sequences outside of the proteincoding region. Mol. Cell. Biol. 6:15–25.
  • Jaynes, J. B., J. E. Johnson, J. N. Buskin, C. L. Gartside, and S. D. Hauschka. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a musclespecific enhancer. Mol. Cell. Biol. 8:62–70.
  • Jost, J.-P., H. Saluz, J. Jiricny, and B. Moncharmont. 1987. Estradiol-dependent trans-acting factor binds preferentially to a dyad-symmetry structure within the third intron of the avian vitellogenin gene. J. Cell. Biochem. 35:69–82.
  • Kawamoto, T., K. Makino, S. Orita, A. Nakata, and T. Kukunaga. 1989. DNA bending and binding factors of the human β-actin promoter. Nucleic Acids Res. 17:523–537.
  • Kohwi-Shigematsu, T., R. Gelinas, and H. Weintraub. 1983. Detection of altered DNA conformations at specific sites in chromatin and supercoiled DNA. Proc. Natl. Acad. Sci. USA 80:4389–4393.
  • Lannigan, D. A., and A. C. Notides. 1989. Estrogen receptor selectively binds to the ‘coding strand’ of an estrogen responsive element. Proc. Natl. Acad. Sci. USA 86:863–867.
  • Larsen, A., and H. Weintraub. 1982. An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell 29:609–622.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequencespecific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831.
  • Mar, J., and C. P. Ordahl. 1988. A conserved CATTCCT motif is required for skeletal muscle specific expression of the cardiac troponin T gene promoter. Proc. Natl. Acad. Sci. USA 85:6404–6408.
  • Mar, J., and C. P. Ordahl. 1990. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol. Cell. Biol. 10:4271–4283.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac gene that modulate its transcription in muscle cells: presence of an evolutionary conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Mohun, T., N. Garrett, and R. Treisman. 1987. Xenopus cyto- skeletal actin and human c-fos gene promoters share a conserved protein-binding site. EMBO J. 6:667–673.
  • Murre, C., P. Schonleber McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins. Cell 56:777–783.
  • Murre, C., P. Schonleber McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to common DNA sequence. Cell 58:537–544.
  • Nickol, J. M., and G. Felsenfeld. 1983. DNA conformation at the 5′ end of the chicken adult β-globin gene. Cell 35:467–477.
  • Phan-Dihn-Tuy, F., D. Tuil, F. Schweighoffer, C. Pinset, A. Kahn, and A. Minty. 1988. The ′CC.Ar.GG box. A proteinbinding site common to transcription-regulatory regions of the cardiac actin, c-fos and interleukin-2 receptor genes. Eur. J. Biochem. 173:507–515.
  • Pierce, J. W., M. Lenardo, and D. Baltimore. 1988. Oligonucleotide that binds nuclear factor NF-ΚB acts as a lymphoidspecific and inducible enhancer element. Proc. Natl. Acad. Sci. USA 85:1482–1486.
  • Rajavashisth, T. B., A. K. Taylor, A. Andalibi, K. L. Svenson, and A. J. Lusis. 1989. Identification of a zinc-finger protein that binds to the sterol regulatory element. Science 245:640–643.
  • Ryan, W. A., Jr., B. R. Franza, Jr., and M. Z. Gilman. 1989. Two distinct phosphoproteins bind to the c-fos serum response element. EMBO J. 8:1785–1792.
  • Santoro, L, and K. Walsh. Unpublished data.
  • Selden, R. F., K. B. Howie, M. E. Rowe, H. M. Goodman, and D. D. Moore. 1986. Human growth hormone as a receptor gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6:3173–3179.
  • Shaw, P. E., H. Schroter, and A. Nordheim. 1989. The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell 56:563–572.
  • Siebenlist, U., and W. Gilbert. 1980. Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc. Natl. Acad. Sci. USA 77:122–126.
  • Sturm, R., T. Baumruker, B. R. Franza, Jr., and W. Herr. 1987. A 100-kD HeLa cell octamer binding protein (OBP100) interacts differently with two separate octamer-related sequences within the SV40 enhancer. Genes Dev. 1:1147–1160.
  • Svaren, J., S. Inagami, E. Lovegren, and R. Chalkley. 1987. DNA denatures upon drying after ethanol precipitation. Nucleic Acids Res. 15:8739–8754.
  • Travers, A. A. 1990. Why bend DNA? Cell 60:177–180.
  • Treisman, R. 1985. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell 42:889–902.
  • Treisman, R. 1986. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 46:567–574.
  • Walsh, K. 1989. Cross-binding of factors to functionally different promoter elements in c-fos and skeltal actin genes. Mol. Cell. Biol. 9:2191–2201.
  • Walsh, K. Unpublished data.
  • Walsh, K., and P. Schimmel. 1987. Two nuclear factors compete for the skeletal muscle actin promoter. J. Biol. Chem. 262:9429–9432.
  • Walsh, K., and P. Schimmel. 1988. DNA binding site for two skeletal actin promoter factors is important for expression in muscle cells. Mol. Cell Biol. 8:1800–1802.
  • Wigler, M., A. Pellicer, S. Silverstein, and R. Axel. 1978. Biochemical transfer of single-copy eukaryotic genes using total cellular DNA as donor. Cell 14:725–731.
  • Wilkinson, W. O., H. Y. Min, K. P. Claffey, B. L. Satterberg, and B. M. Spiegelman. 1990. Control of the adipsin gene in adipocyte differentiation. Identification of distinct nuclear factors for binding to single- and double-stranded DNA. J. Biol. Chem. 265:477–482.
  • Wirth, T., L. Staudt, and D. Baltimore. 1987. An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoidspecific promoter activity. Nature (London) 329:174–178.
  • Yu, Y.-T., and J. L. Manley. 1986. Structure and function of the S1 nuclease-sensitive site in the adenovirus late promoter. Cell 45:743–751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.