6
Views
22
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Conserved 28-Base-Pair Element (HF-1) in the Rat Cardiac Myosin Light-Chain-2 Gene Confers Cardiac-Specific and α-Adrenergic-Inducible Expression in Cultured Neonatal Rat Myocardial Cells

, , , &
Pages 2273-2281 | Received 14 Aug 1990, Accepted 14 Jan 1991, Published online: 31 Mar 2023

REFERENCES

  • Bergsma, D. J., J. M. Grichnik, L. M. A. Gossett, and R. J. Schwartz. 1986. Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal a-actin gene. Mol. Cell. Biol. 6:2462–2475.
  • Bouvagnet, P. F., E. E. Strehler, G. E. White, M.-A. StrehlerPage, B. Nadal-Ginard, and V. Mahdavi. 1987. Multiple positive and negative 5′ regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene. Mol. Cell. Biol. 7:4377–4389.
  • Braun, T., E. Bober, B. Winter, N. Rosenthal, and H. H. Arnold. 1990. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 9:821–831.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701–709.
  • Braun, T., E. Tannich, G. Buschhausen-Denker, and H.-H. Arnold. 1989. Promoter upstream elements of the chicken cardiac myosin light-chain 2-A gene interact with trans-acting regulatory factors for muscle-specific transcription. Mol. Cell Biol. 9:2513–2525.
  • Buckingham, M. E., and A. Minty. 1983. Contractile protein genes, p. 1-78. In G. F. McLean and R. A. Flavell (ed.), Eucaryotic genes: their structure, activity, and regulation. Butterworths, London.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Cherrington, J. M., and E. S. Mocarski. 1989. Human cytomegalovirus iel transactivates the a promoter-enhancer via an 18-base-pair repeat element. J. Virol. 63:1435–1440.
  • Cribbs, L. L., N. Shinizu, C. E. Yockey, J. E. Levin, S. Jacovcic, R. Zak, and P. Umeda. 1989. Muscle-specific regulation of a transfected rabbit myosin heavy chain β gene promoter. J. Biol. Chem. 264:10672–10678.
  • Dalla Libera, L. 1986. A comparative study of atrial and ventricular myosin light subunits from different species. Comp. Biochem. Physiol. 83:751–755.
  • Davis, R. L., P.-F. Cheng, A. B. Lassar, and H. Weintraub. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733–746.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Devlin, B. H., F. C. Wefald, W. E. Kraus, T. S. Bernard, and R. S. Williams. 1989. Identification of a muscle-specific enhancer within the 5′-flanking region of the human myoglobin gene. J. Biol. Chem. 264:13896–13901.
  • de Wet, J. R., K. V. Wood, M. DeLuca, D. R. Helinski, and S. Subramani. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–737.
  • Donoghue, M., H. Ernst, B. Wentworth, B. Nadal-Ginard, and N. Rosenthal. 1988. A muscle-specific enhancer is located at the 3′ end of the myosin light-chain 1/3 gene locus. Genes Dev. 2:1779–1790.
  • Dunnmon, P., K. Iwaki, S. Henderson, A. Sen, and K. R. Chien. 1990. Phorbol esters induce immediate-early genes and stimulate cardiac gene transcription in neonatal rat myocardial cells. J. Mol. Cell. Cardiol. 22:901–910.
  • Edmondson, D. G., and E. N. Olson. 1989. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3:628–640.
  • Gossett, L. A., D. J. Kelvin, E. A. Sternberg, and E. N. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033.
  • Grunstein, M., and D. S. Hogness. 1985. Colony hybridization: a method for the isolation of cloned cDNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA 82:3961–3965.
  • Gustafson, T. A., B. E. Markham, and E. Morkin. 1986. Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ. Res. 59:194–201.
  • Henderson, S. A., and K. R. Chien. Unpublished observations.
  • Henderson, S. A., M. Spencer, A. Sen, C. Kumar, M. A. Q. Siddiqui, and K. R. Chien. 1989. Structure, organization and expression of the rat cardiac myosin light chain-2 gene: Identification of a 250 bp fragment which confers cardiac specific expression. J. Biol. Chem. 264:18142–18148.
  • Henderson, S. A., Y. Xu, and K. R. Chien. 1988. Nucleotide sequence of full length cDNAs encoding rat cardiac myosin light chain-2. Nucleic Acids Res. 16:4722.
  • Horlick, R. A., and P. A. Benfield. 1989. The upstream musclespecific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol. Cell. Biol. 9:2396–2413.
  • Imagawa, M., R. Chiu, and M. Karin. 1987. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 51:251–260.
  • Iwaki, K., V. P. Sukhatme, H. E. Shubeita, and K. R. Chien. 1990. a and β adrenergic stimulation induce distinct patterns of immediate early gene expression in neonatal rat myocardial cells:fos/jun expression is associated with sarcomere assembly: Egr-1 induction is primarily an al mediated response. J. Biol. Chem. 265:13809–13817.
  • Izumo, S., B. Nadal-Ginard, and V. Mahdavi. 1988. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl. Acad. Sci. USA 85:339–343.
  • Johnson, J. E., B. J. Wold, and S. D. Hauschka. 1989. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol. Cell. Biol. 9:3393–3399.
  • Klarsfeld, A., P. Daubas, B. Bourachot, and J. P. Changeux. 1987. A 5′-flanking region of the chicken acetylcholine receptor α-subunit gene confers tissue specificity and developmental control of expression in transfected cells. Mol. Cell. Biol. 7:951–955.
  • Knowlton, K. U., R. S. Ross, S. M. Evans, S. A. Henderson, C. Glembotski, and K. R. Chien. J. Biol. Chem., in press.
  • Kumar, C. C., L. Cribbs, P. Delaney, K. R. Chien, and M. A. Q. Siddiqui. 1986. Heart myosin light chain 2 gene: nucleotide sequence of full length cDNA and expression in normal and hypertensive rat. J. Biol. Chem. 261:2866–2872.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequencespecific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831.
  • Lee, H., S. Henderson, R. Reynolds, P. Dunnmon, D. Yuan, and K. R. Chien. 1988. Alpha-1 adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells: effects on myosin light chain-2 gene expression. J. Biol. Chem. 263:7352-7358.
  • Lin, Z.-Y., C. A. Deschene, J. Eldrige, and B. M. Paterson. 1989. An avian muscle factor related to MyoD1 activates musclespecific promoters in nonmuscle cells of different germ layer origin and in BrdU-treated myoblasts. Genes Dev. 3:986–996.
  • Long, C. S., C. P. Ordahl, and P. C. Simpson. 1989. Alpha-1 adrenergic receptor stimulation of sarcomeric actin isogene transcription in hypertrophy of cultured rat heart muscle cells. J. Clin. Invest. 83:1078–1082.
  • Mar, J. H., B. P. Antin, T. A. Cooper, and C. P. Ordahl. 1988. Analysis of the upstream regions governing expression of the chicken cardiac troponin T gene in embryonic cardiac and skeletal muscle cells. J. Cell Biol. 107:573–585.
  • Mar, J. H., and C. P. Ordahl. 1990. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol. Cell. Biol. 10:4271–4283.
  • Meidell, R. S., A. Sen, S. A. Henderson, M. F. Slahetka, and K. R. Chien. 1986. Coordinate increases in myofibrillar protein synthesis during a-1 adrenergic stimulation of cultured rat myocardial cells. Am. J. Physiol. 251:H1076-H1084.
  • Melton, D. A., P. A. Krieg, M. R. Rebagliati, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Miner, J. H., and B. Wold. 1990. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87:1089–1093.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Mohun, T. J., M. V. Taylor, N. Garrett, and J. B. Gurdon. 1989. The CArG promoter sequence is necessary for muscle-specific transcription of the cardiac actin gene in Xenopus embryos. EMBO J. 8:1153–1161.
  • Morgan, H. E., E. E. Gordon, Y. Kira, B. H. L. Chua, L. A. Russo, C. J. Peterson, P. J. McDermott, and P. A. Watson. 1987. Biochemical mechanisms of cardiac hypertrophy. Annu. Rev. Physiol. 49:533–543.
  • Nagai, R., L. Pritz, R. B. Low, W. S. Stirewalt, R. Zak, N. R. Alpert, and R. Z. Litten. 1987. Myosin isozyme synthesis and mRNA levels in pressure-overloaded rabbit hearts. Circ. Res. 60:692–699.
  • Parmacek, M. S., and J. M. Leiden. 1989. Structure and expression of the murine slow/cardiac troponin C gene. J. Biol. Chem. 264:13217–13225.
  • Pinney, D. F., S. H. Pearson-White, S. F. Konieczny, K. E. Latham, and C. P. Emerson, Jr.. 1988. Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell 53:781–793.
  • Rhodes, S. J., and S. F. Konieczny. 1989. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3:2050–2061.
  • Rosenthal, N. 1987. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 152:704–720.
  • Ross, R., A. R. Harris, and K. R. Chien. Unpublished observations.
  • Ross, R., K. Lee, J. Price, and K. R. Chien. Unpublished observations.
  • Sassoon, D. A., I. Garner, and M. Buckingham. 1988. Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo. Development 104:155–164.
  • Schafer, B. W., B. T. Blakely, G. J. Darlington, and H. M. Blau. 1990. Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature (London) 334:454–458.
  • Schwartz, K., D. De la Bastie, P. Bouveret, P. Olivero, S. Alonso, and M. Buckingham. 1986. Alpha skeletal muscle actin mRNAs accumulate in hypertrophied adult rat hearts. Circ. Res. 59:551–555.
  • Sen, A., P. Dunnmon, S. A. Henderson, R. D. Gerard, and K. R. Chien. 1988. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J. Biol. Chem. 263:19132–19136.
  • Shubeita, H. E., E. Martinson, K. R. Chien, and J. H. Brown. 1990. Expression of a constitutively active protein kinase C in cardiac myocytes leads to transcriptional activation of ANF and MLC-2 genes. J. Cell Biol. 111:213a.
  • Shubeita, H. E., P. M. McDonough, A. Harris, K. U. Knowlton, C. Glembotski, J. H. Brown, and K. R. Chien. 1990. Endothelin induction of sarcomere assembly and cardiac gene expression in ventricular myocytes: a paracrine mechanism for myocardial cell hypertrophy. J. Biol. Chem. 265:20555–20562.
  • Sills, M. N., Y. C. Xu, E. Baracchini, R. H. Goodman, S. S. Cooperman, G. Mandel, and K. R. Chien. 1989. Expression of diverse Na+ channels in rat myocardium. J. Clin. Invest. 84:331–336.
  • Simpson, P. 1983. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an α1 adrenergic response. J. Clin. Invest. 72:732–738.
  • Starksen, N. F., P. C. Simpson, N. Bishopric, S. R. Coughlin, W. M. F. Lee, and L. T. Williams. 1986. Cardiac myocyte hypertrophy is associated with c-myc proto-oncogene expression. Proc. Natl. Acad. Sci. USA 83:8348–8350.
  • Sternberg, E. A., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909.
  • Walsh, K., and P. Schimmel. 1988. DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells. Mol. Cell. Biol. 8:1800–1802.
  • Weintraub, H., S. J. Tapscott, R. L. Davis, M. J. Thayer, M. A. Adam, A. B. Lassar, and A. D. Miller. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver and fibroblast cell lines by forced expression of Myo D.. Proc Natl. Acad. Sci. USA 86:5434–5438.
  • Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, as a domain homologous to MyoD. Cell 56:607–617.
  • Zeller, R., K. D. Bloch, B. S. Williams, R. J. Arceni, and C. E. Seidman. 1987. Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev. 1:693–698.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.