0
Views
11
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Involvement of Single-Stranded Tails in Homologous Recombination of DNA Injected into Xenopus laevis Oocyte Nuclei

&
Pages 3268-3277 | Received 14 Nov 1990, Accepted 20 Mar 1991, Published online: 01 Apr 2023

References

  • Anderson, R. A., and S. L. Eliason. 1986. Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing. Mol. Cell. Biol. 6:3246-3252.
  • Baur, M., I. Potrykus, and J. Dasakowski. 1990. Intermolecular homologous recombination in plants. Mol. Cell. Biol. 10:492-500.
  • Cao, L., and N. Kleckner. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089-1101.
  • Carroll, D., S. H. Wright, R. K. Wolff, E. Grzesiuk, and E. B. Maryon. 1986. Efficient homologous recombination of linear DNA substrates after injection into Xenopus laevis oocytes. Mol. Cell. Biol. 6:2053-2061.
  • Carter, D. M., and C. M. Radding. 1971. The role of exonuclease and β protein of phage λ in genetic recombination. II. Substrate specificity and the mode of action of X exonuclease. J. Biol. Chem. 246:2502-2512.
  • Cassuto, E., T. Lash, D. S. Sriprakash, and C. M. Radding. 1971. Role of exonuclease and β protein of phage λ in genetic recombination. V. Recombination of X DNA in vitro. Proc. Natl. Acad. Sci. USA 68:1639-1643.
  • Cassuto, E., and C. M. Radding. 1971. Mechanism for the action of λ exonuclease in genetic recombination. Nature (London) New Biol. 229:13-16.
  • Church, G. M., and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991-1995.
  • Cox, M. M., and I. R. Lehman. 1987. Enzymes of general recombination. Annu. Rev. Biochem. 56:229-262.
  • Craigie, R., and K. Mizuuchi. 1985. Mechanism of transposition of bacteriophage Mu: structure of a transposition intermediate. Cell 41:867-876.
  • Dawson, R., and D. Carroll. Unpublished data.
  • Doherty, M. J., P. T. Morrison, and R. Kolodner. 1983. Genetic recombination of bacterial plasmid DNA. J. Mol. Biol. 167:539-560.
  • Feinberg, P. A., and B. Vogelstein. 1983. A technique for labeling restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6-13.
  • Formosa, T., and B. M. Alberts. 1986. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47:793-806.
  • Game, J. C. 1983. Radiation-sensitive mutations and repair in yeast, p. 109-137. In J. F. T. Spencer, D. M. Spencer, and A. R. W. Smith (ed.), Yeast genetics: fundamental and applied aspects. Springer-Verlag, New York.
  • Gurdon, J. B., and M. P. Wickens. 1983. The use of Xenopus oocytes for the expression of cloned genes. Methods Enzymol. 101:370-386.
  • Haber, J. A., R. H. Borts, B. Connolly, M. Lichten, N. Rudin, and C. I. White. 1988. Physical monitoring of meiotic and mitotic recombination in yeast. Prog. Nucleic Acid Res. Mol. Biol. 35:209-259.
  • Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. (Cambridge) 5:282-304.
  • Hsieh, P., and R. D. Camerini-Otero. 1989. Formation of joint DNA molecules by two eukaryotic strand exchange proteins does not require melting of a DNA duplex. J. Biol. Chem. 264:5089-5097.
  • Klar, A. J. S., and L. M. Miglio. 1986. Initiation of meiotic recombination by double-chain breaks in S. pombe. Cell 46:725-731.
  • Kolodkin, A. L., A. J. S. Klar, and F. W. Stahl. 1986. Double-strand breaks can initiate meiotic recombination in S. cerevisiae. Cell 46:733-740.
  • Kucherlapati, R., and G. R. Smith (ed.). 1988. Genetic recombination. American Society for Microbiology, Washington, D.C.
  • Legerski, R. J., J. E. Penkala, C. A. Peterson, and D. A. Wright. 1990. Removal of 2′,3′-dideoxynucleotide residues from injected DNA in Xenopus laevis oocytes. Mutat. Res. 236:1-7.
  • Lichten, M., C. Goyon, N. P. Schuttes, D. Treco, J. W. Szostak, J. E. Haber, and A. Nicolas. 1990. Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis. Proc. Natl. Acad. Sci. USA 87:7653-7657.
  • Lin, F. W., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4:1020-1034.
  • Lindahl, T. 1971. The action pattern of mammalian deoxyribo-nuclease IV. Eur. J. Biochem. 18:415-421.
  • Lindahl, T., J. A. Gaily, and G. M. Edelman. 1969. Deoxyribo-nuclease IV: a new exonuclease from mammalian tissues. Proc. Natl. Acad. Sci. USA 62:597-603.
  • Linn, S. R. 1985. Tabulation of some well characterized enzymes with deoxyribonuclease activity, p. 353-370. In S. R. Linn and R. J. Roberts (ed.), Nucleases. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Maryon, E. 1990. The role of molecular ends in homologous recombination of DNA injected into Xenopus oocytes. Ph.D. thesis, University of Utah, Salt Lake City.
  • Maryon, E. Unpublished data.
  • Maryon, E., and D. Carroll. 1989. Degradation of linear DNA by a strand-specific exonuclease activity in Xenopus laevis oocytes. Mol. Cell. Biol. 9:4862-4871.
  • Maryon, E., and D. Carroll. 1991. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol. Cell. Biol. 11:3278-3287.
  • Meselson, M. S., and C. M. Radding. 1975. A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72:358-361.
  • Mosig, G. 1987. The essential role of recombination in phage T4 growth. Annu. Rev. Gen. 21:347-371.
  • Resnick, M. A. 1976. The repair of double-strand breaks in DNA: a model involving recombination. J. Theor. Biol. 59:97-106.
  • Rudin, N., E. Sugarman, and J. E. Haber. 1989. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519-534.
  • Seidman, M. M. 1987. Intermolecular homologous recombination between transfected sequences in mammalian cells is primarily nonconservative. Mol. Cell. Biol. 7:3561-3565.
  • Smith, G. R., S. K. Amundsen, A. M. Chaudhury, K. C. Cheng, A. S. Ponticelli, C. M. Roberts, D. W. Schultz, and A. F. Taylor. 1984. Roles of RecBC enzyme and chi sites in homologous recombination. Cold Spring Harbor Symp. Quant. Biol. 49:485-495.
  • Stahl, F. W. 1986. Roles of double-strand breaks in generalized recombination. Prog. Nucleic Acid Res. Mol. Biol. 33:169-194.
  • Strathern, J. N. 1988. Control and execution of homothallic switching in Saccharomyces cerevisiae, p. 445-464. In R. Kucherlapati and G. R. Smith (ed.), Genetic recombination. American Society for Microbiology, Washington, D.C.
  • Sun, H., D. Treco, N. P. Schuttes, and J. W. Szostak. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature (London) 338:87-90.
  • Symington, L., P. Morrison, and R. Kolodner. 1985. Intracellular recombination of linear DNA catalyzed by the Escherichia coli RecE recombination system. J. Mol. Biol. 186:515-525.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand break repair model for recombination. Cell 33:25-35.
  • Taylor, A., and G. R. Smith. 1980. Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22:447-457.
  • Thaler, D., and F. W. Stahl. 1988. DNA double chain breaks in the recombination of phage λ and of yeast. Annu. Rev. Genet. 22:169-197.
  • Thaler, D. S., M. M. Stahl, and F. W. Stahl. 1987. Double-chain cut sites are recombination hotspots in the Red pathway of phage λ. J. Mol. Biol. 195:75-87.
  • Wake, C. T., F. Vernaleone, and J. H. Wilson. 1985. Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells. Mol. Cell. Biol. 5:2080-2089.
  • West, S. C. 1990. Processing of recombination intermediates in vitro. Bioessays 12:151-154.
  • White, C. I., and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663-673.
  • Wu, A. M., R. Kahn, C. Dasgupta, and C. Radding. 1982. Formation of nascent heteroduplex structures by RecA protein and DNA. Cell 30:37-44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.